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Abstract

In order to plan operations where knowledge of significant elements is imprecise and
uncertain, a means of characterizing the situation in terms of the various factors that
may influence those operations must be provided. In this paper we discuss an approach
to that characterization that uses evidential reasoning to handle the uncertainty, impre-
cision, and incompleteness typical of sources of real-world information and knowledge,
to support planning routes for military helicopters.

Evidential reasoning is a maturing collection of inference techniques for reasoning
with uncertain information. Based on the Shafer-Dempster theory of evidence, eviden-
tial reasoning uses a non-Bayesian updating scheme to combine evidence provided by
multiple, diverse knowledge sources. Knowledge sources in an evidential reasoning sys-
tem are not required to attribute their belief to a universe of discourse comprised solely
of mutually exclusive, exhaustive, singleton events, as required by a classical probability
approach. Rather, they may express levels of ignorance explicitly by allocating belief
to disjunctions of propositions, thereby leading directly to an interval measure of belief;
ignorance is expressed by the width of this interval.

Evidential reasoning evolved from consideration of appropriate models for reasoning
about, information acquired from sensors, and therefore seems natural for drawing con-
clusions from sensor data and prestored maps regarding the degree to which a selected
geographic area will support certain activities. Here, we discuss evidential reasoning
and illustrate the utility of the technology for classifying geographic areas by describ-
ing our current map-and-sensor-based research in which we estimate the utility of land
areas for concealing helicopter operations.

1 Introduction and Overview

Developing strategies to achieve some future aim is a significant human activity. In most
“real-world” situations, such planning activities must be carried out using information of

*This research was sponsored by the U.S. Army Aviation Research and Development Agency under U.5.
Army CECOM Contract DAABO7-84-C-F092.




varying degrees of reliability, precision, and completeness. The construction of automated
planning systems demands that automated techniques be developed for representing and
using such information, while at the same time controlling the generation and search of the
potentially huge search spaces that can be created. In our current work we are addressing the
problem of route-planning for U.S. Army helicopter pilots flying at extremely low altitudes
(e.g., nap-of-the-earth or NOE, literally at or below the tops of the trees), where effective
plans for achieving mission goals must be derived, even under conditions of uncertainty
and ignorance regarding locations and strengths of possible hostile troop concentrations,
the availability of landmarks for navigation, and the suitability of the terrain for tactical
maneuvers such as masking. In order to have any hope of developing effective plans, a
systemn must be able to characterize the situation as accurately as possible.

1.1 The Mission-Planning Context

Although this paper addresses only the initial characterization of an area of interest, the
context of that analysis and its rationale are important to the overall understanding of
the methodology, and are described here. We have several system goals for our ultimate
implementation. The primary goal is that under the interactive guidance of the human user,
the system be able to capitalize on the full variety of information (such as aerial photographs,
maps, factor overlays, intelligence reports, tables of organization, and characteristics of
sensors and weapons) typically available to a mission-planner. A second requirement is that
a component of the system must be capable of running on computational equipment within
the helicopter, in order to follow the execution of the plan enroute and, when necessary, to
replan parts of the mission.

The first goal is addressed by combining a system for reasoning from evidential infor-
mation, Gister,! with ImagCalc, a system for efficiently manipulating imagery of various
types. The basic mode of operation will support a user who provides high-level informa-
tion regarding the appropriate sources of primitive information and their manipulation, to
derive mission-significant factors. The user will, in effect, detail a prototypical analysis of
available information, which will be cornpiled into code that will be run directly over map
and image descriptions of the area of interest, to describe the area in mission-related terms.

The second goal will be addressed by deriving a compact graph representation of the
area of interest, which may be used enroute to derive alternate routings when it is necessary
to deviate from the primary plan. This representation will encode salient properties from
the original characterization, but will require neither the full criginal knowledge sources
nor the elaborate computational machinery necessary to produce and evaluate the initial
characterizations.

Our basic approach to the complete planning problem is first to partition the area of
interest into a collection of “local areas.” These local areas (which may range from the size of
“pixels” in the original images or maps to much coarser resclutions) are then characterized
on the basis of local measures (which may, of course, be a function of situations and events
external to the local area itself) according to how well necessary helicopter operations

!Gister, Grasper II and ImagCale are all trademarks of SRI International.



may be supported in that area. Similar adjacent local regions will then be clustered until a
reasonable number of regions of significant size are created. Within each region, all paths are
to be considered equivalent, thereby enabling the planner to focus on qualitatively different
routes. A graph (essentially the dual-graph of the collection of regions) will then be derived
from the resulting clusters, and a heuristic search procedure used to select candidate routes
through the graph. These candidates may then be evaluated based on their route properties
(i.e., those properties that are route-dependent, such as fuel used or total exposure) as well
as the local area properties. If acceptable candidates are found, they will be ranked and
presented to the user; if not, certain predefined constraints may be relaxed, and a new
attempt made. If, after several iterations, no acceptable routes are determined, the user
will be required to change his criteria or their relative weightings, or to accept routings of
inferior quality to that originally requested.

The development of the complete system is ongoing, however, each of the individual
steps has been successfully addressed. In the remainder of this paper, we discuss just
the characterization stage of the process and describe how the user can specify and test
knowledge structures for analyzing and describing geographic areas before applying them
to the available geographic data. This approach capitalizes on the capabilities of Gister
and ImagCalc. Both of these systems were developed at SRI and currently reside on the
Symbolics 3600 family of Lisp machines.

1.2 The Use of Evidential Reasoning to Characterize Local Geographic
Areas

The process of characterizing areas of interest on a map begins with a mapping from mea-
surable properties into belief functions, which describe the degree to which those properties
might affect intended operations. Belief functions (described in detail below) are provided
by knowledge sources (KSs) and represent their view of the state of the world. A unit of
belief (relative likelihood) is distributed over a set of propositions or statements describing
possible states of the world. The set of possible propositions over which a KS may dis-
tribute its unit of belief is the set of all subsets derived from the frame of discernment, a
set of mutually exclusive, exhaustive, primitive propositions (typically referred to as @).
More general than classical Bayestan probability distributions, belief functions, alsc known
as evidential mass functions (or, more simply, mass functions) may distribute their unit of
belief over overlapping (i.e., nonexclusive) propositions. In particular, a knowledge source
may indicate ignorance {or imprecision) by providing a mass function that distributes belief
over a disjunction of propositions, without providing a detailed distribution of belief to
elements of the disjunction. Allocating an amount of belief directly to © indicates complete
ignorance to that extent. As belief allocated to disjunctions may eventually devolve to any
of the individual propositions, their relative likelihoods are constrained to fall within an
evidential interval.

Using evidential reasoning to characterize geographic areas offers several benefits. The
primary advantages are related to a knowledge source’s ability to state precisely what it
knows about a situation, without being forced to artificial precision by the mathematical
requirements of standard probability theory. In particular, the theory does not require the



knowledge or use of prior probability distributions, which are usually extremely difficult
to determine (although when prior information is available, it is easily used). The formal
theory underlying evidential reasoning (described below) makes it straightforward to con-
struct the underlying knowledge structures needed for analysis, and then to construct the
corresponding analyses using a variety of evidential reasoning operators (such as fusion,
translation, and discounting) to interpret real-time information.

Characterizing geographic areas to support tactical operations necessarily entails draw-
ing conclusions and making statements of varying degrees of precision and reliability. For
example, to the helicopter mission planner, an important characteristic of a geographic area
might be the degree to which it is likely to offer opportunities for a helicopter to hide (i.e., to
become masked) from hostile eyes (or sensors). This opportunity may at best be estimated
based upon the type of terrain and ground cover likely to be found in the area in question.
Forcing any particular source of knowledge about the situation to make precise estimates is
(usually) to force a false, unsupported precision into the computations. Instead, it is better
to let the various KSs provide their input at a degree of precision commensurate with their
knowledge, and then to look for a consensus among several sources.

1.3 The Derivation of Belief Functions for Helicopter Mission-Planning

A variety of information and preprocessed data comprises the information sources for char-
acterizing geographic areas and evaluating subsequently chosen routes. These information
sources include direct statements about the current situation as well as statements that
may be inferred independently of the helicopter’s activities. The general types of informa-
tion currently expected to be contained in the mission-planning system include: platform
state (i.e., location, velocity, height, resources, and sensor signature), goal information, ter-
rain attributes (i.e., vegetation, contour, terrain type, topography, and cultural features),
meteorology (i.e., weather and visibility), navigational landmarks, hostile forces (locations,
types, sensors, and weapons), and control data (e.g., refueling points and flight corridors).
A digital terrain map (DTM) over a typical area of interest (actually of Yosemite National
Park, California) is shown in Figure 1. In this figure lower elevations are shown as lighter
shades. The crosses correspond to the specified locations of hostile observers (and are used
in computing the intervisibility map of Figure 2. Alongside the DTM is shown a wire-frame
model of the area from an oblique perspective southwest of the Valley.

In these experiments, we used a Level-7 DTM (with a resolution of approximately 120
meters per pixel) as the base representation, along with a registered overly describing veg-
etation. The original data was sampled using a 4x4 pixel patch to produce local areas of
approximately 480 meters square. The sampling method varied for each type of character-
istic: for TOPOGRAPHY, we used the variance of the altitudes within the patch as the
pixel value; for VEGETATION, we averaged the vegetation types; and for INTERVISIBIL-
ITY we selected the minimum safe height in the patch. After sampling the data, they were
mapped into the appropriate belief functions. These belief functions were used to determine
the ultimate value of RISK for each location.

As an example of how a belief function may be derived from information about the world,
consider the problem of determining the maximum safe altitude for undetected helicopter
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Figure 1: A DTM (a) over Yosemite (lower altitudes shown as darker points) With a
Corresponding Wire-Frame Model (b) of the Area.




operations. From information regarding the probable locations of hostile forces (as shown in
Figure 1), we may compute an intervisibility map of the area depicting the maximum height
above ground level that a helicopter may fly before risking exposure to those forces. Figure
2a shows the original intervisibility map (lower safe altitudes are shown as lighter areas);
the sampled map is shown in Figure 2b; and Figure 2c depicts the resulting belief function
quantized into the categories of MINIMUM HEIGHT (i.e., the area is viewable all the way
down to the ground), NAP-OF-THE-EARTH (the area is viewable down to approximately
15 feet above ground level), CONTOUR (15-40 feet), LOW-LEVEL, (40-200 feet), and
ABOVE-LOW-LEVEL (above 200 feet). These intervals represent the basic statements
in the frame of discernment for INTERVISIBILITY. By associating an error interval with
the measured value (essentially discounting the original measurement for possible errors),
we may derive information supporting multiple possibilities. For example, if the actual
maximum measured height at a location was 30 feet, and the error interval was plus-
or-minus 30 feet (which might be derived from known inaccuracies in the DTM or in the
estimation of the altitude of possible observers}, we have evidence supporting the possibility
of the true maximum height falling into any of the three categories MINIMUM HEIGHT,
NAP-OF-THE-EARTH, or CONTOUR.? This information may be easily converted into a
belief function over the INTERVISIBILITY frame.

In a similar fashion, topographic data and vegetation overlays are converted to belief
functions. Examples are shown in Figures 3 and 4,

In the remainder of this paper, we review evidential reasoning, using examples from the
local-area-characteriztion problem to illustrate key points. An analysis of the potential risk
associated with operations in an area based on the knowledge structures created is carried
out using typical input bodies of evidence.

2 Evidential Reasoning

For the past several years (see [Low82,GLF81,L.G83b,LG83a,L.5G86,Wes86]), we have been
addressing perceptual problems that bridge the gap between low-level sensing and high-level
reasoning. Problems that fall into this gap are often characterized by multiple evidential
sources of real-time data, which must be properly integrated with general knowledge about
the world to provide an understanding of the situation that is sufficiently rich to support
high-level goals. In this section, we briefly describe a formal framework for reasoning with
perceptual data that forms the basis for evidential reasoning® systems.

2.1 Background

The information required to understand the current state of the world comes from multiple
sources: real-time sensor data, previously stored general knowledge, and current contex-

?In practise, accounting for possible errors will be handled directly by the evidential reasoning discounfing
operation.

3 Bvidential reasoning i3 a term coined by SRI International [LGB82| to denote the body of techniques
specifically designed for manipulating and reasoning from evidential information as characterized in this
paper.




Figure 2: Intervisibility Maps. (a) Original Level-7 intervisibility map (darker areas have

higher safe altitudes); (b) sampled intervisibility map; (c) INTERVISIBILITY belief func-
tion.
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tual information. Sensors typically provide evidence in support of certain interpretations.
Evidence is characteristically uncertain: It allows for multiple possible explanations; it is
incomplete: the source rarely has a full view of the situation; and it may be completely or
pattially incorrect. The quality and the ease with which situational information may be ex-
tracted from a synthesis of current sensor data and prestored knowledge is a function both
of how strongly the characteristics of the sensed data focus on appropriate intermediate
conclusions and the strength and effectiveness of the relations between those conclusions
and situation events.

Given its characteristics, evidence is not readily represented either by logical formalisms
or by classical probabilistic estimates. Developers of automated systems that must reason
from evidence have therefore frequently turned to informal, heuristic methods for handling
uncertain information. The “probabilities” produced by these informal approaches often
cause difficulties in interpretation. The lack of a formally consistent method can cause prob-
lems in extending the capabilities of such systems effectively. Our work in evidential rea-
soning was motivated by these shortcomings. Our theory is based on the Shafer-Dempster
theory of evidence [Dem68,5ha76,5ha86| and aims to overcome some of the difficulties in
reasoning from evidence by providing a natural representation for evidential information, a
formal basis for drawing conclusions from evidence, and a representation for belief.

In evidential reasoning, a knowledge source is allowed to express probabalistic opinions
about the (partial) truth or falsity of statements that are composed of subsets of propo-
sitions from a space of distinct, exhaustive possibilities (called the frame of discernment).
The theory allows a KS to assign belief to the individual propositions in the space or to
disjunctions of these propositions, or both. When it assigns belief to a disjunction, a KS
is explicitly stating that it does not have encugh information to distribute this belief more
precisely. This condition has the attractive feature of enabling a KS to distribute its belief
to statements whose granularity is appropriate to its state of knowledge. Also, the state-
ments to which belief is assigned are not required to be distinct from one another. The
distribution of beliefs over a frame of discernment is called a body of evidence.

Evidential reasoning provides a formal method, Dempster’s Rule of Combination, for
fusing (i.e., pooling) two bodies of evidence. The result is a new body of evidence represent-
ing the consensus of the two original bodies of evidence, which may in turn be combined with
other evidence. Because belief may be associated directly with a disjunction of propositions,
the probability in any selected proposition is typically underconstrained. This necessitates
an interval measure of belief, because belief associated with a disjunction may, based upon
additional information, devolve entirely upon any one of the disjuncts. Thus, an interval
associated with a proposition implies that the true probability associated with that propo-
sition must fall somewhere in the interval. A side-effect of applying Dempster’s rule is a
measure of conflict between the two bodies of evidence that provides a means for detecting
possible gross errors in the information.

Current expert-systems technology is most effective when domain knowledge can be
modeled as a set of loosely interconnected concepts (i.e., propositions) [DK77]; this loose
interconnection justifies an incremental approach to updating beliefs. In most of our work,
there is the potential for strong interconnectivity among beliefs in propositions. We there-
fore focus on a body of evidence as a primitive, meaningful collection of interrelated {de-
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pendent) beliefs; updating the belief in one proposition affects the entire body of evidence.
Other work has addressed the concept of a body of evidence in a production-rule formalism
[Kon79,LB82] by creating special entities.

Evidential reasoning provides options for the representation of information: independent
opinions are expressed by multiple (independent) bodies of evidence; dependent opinions
(in which belief in one proposition depends on that of another) can either be expressed by a
single body of evidence or by a network that describes the interrelationships among several
bodies of evidence. These networks of bodies of evidence capture the geneology of each
body (similar in spirit to [Coh85]) and are used in a manner similar to data-flow models
[WAB84], updating interrelated beliefs (i.e., for belief revision [Doy81]).

In this section we assume some familiarity with the Dempster-Shafer theory of beliefs,
although the appropriate equations from this theory are included. We begin with a discus-
sion of the formal approach to the problem of reasoning from evidence and then progress
to a description of the implementation approach, including an example. We close with a
short description of the system that we have developed for applying evidential reasoning.

2.2 The Formal Apprbach
2.2.1 Framing the Problemn

The first step in applying evidential reasoning to a given problem is to delimit a proposi-
tional space of possible situations. Within the theory of belief functions, this propositional
space is called the frame of discernment. It is so named because all bodies of evidence are
expressed relative to this surrounding framework, and it is through this framework that the
interaction of the evidence is discerned. A frame of discernment delimits a set of possible
situations, exactly one of which is true at any one time. For example, our problem is to char-
acterize locations for helicopter operations, and ultimately relate these characterizations to
a “quality-of-life” measure for helicopters at each location. One possible characterization
would be based on the topography at the particular location. In this case, the frame of
discernment consists of the set of all possible types of topography. This frame might be
represented by a small set © 4, in which each element a; corresponds to a possible type (e.g.,
DENSE-FOREST, SPARSE-FOREST, SCRUB, and CLEAR):

94 = {a1,02,...,a,}

Once a frame of discernment has been established, propositional statements can be
represented by disjunctions of elements from the frame corresponding to those situations
for which the statements are true. For example, the proposition A; might correspond to
the statement “the area is forested,” in which case A; would be represented by the subset
of elements from © 4 that correspond to specific types of forest (e.g., DENSE-FOREST and
SPARSE-FOREST):

A; C Oy
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Other propositions describing the topography for this area can be similarly represented
as subsets of @4 (i.e., as elements of the power set of ©4, denoted 294). Once this has
been accomplished, logical questions can be posed and resolved in terms of the frame; logical
operations and relations can be resolved through set operations and relations.

Additional interesting aspects of map areas may be similarly represented by additional
frames of discernment. For example, the vegetative cover (to permit the helicopter to
become masked) in an area of the map may be defined by the frame ©p, which could
include elements corresponding to the types of vegetation that may be present in that area.
Propositional statements pertaining to vegetation can then be defined relative to this frame;
ie.,

Op

B,

{b])b21 . ‘)bn}
Op

N

So far, propositional statements pertaining to topography or vegetation in an area can be
addressed separately, but they cannot be jointly considered. To do this, one must first define
a compatibility relation between the two frames. A compatibility relation simply describes
which elements from the two frames can be true simultaneously. Thus, the compatibility
relation between frames @4 and ©p is a subset of the cross product of the two frames. A
pair (a;, b;) is included if and only if they can be true simultaneously. There is at least one
pair {ai, b;) included for each q; in ©4 (the analogue is true for each b;):

©a8 CO4xX0Bp

Using the compatibility relation © 4 g, we can define a compatibility mapping Cs..p for
translating propositional statements expressed relative to ©4 to statements relative to ©p.
If a statement Ay is true, then the statement Cys..5(A) is also true:

Camp 294 s 292
.CA._.B(A,&) = {bj|(a;,bj)E®A,B,a;€Ak} )

Instead of translating propositional statements between these two frames via Cs.p and
Cpa, we might choose to translate these statements to a common frame that captures
all of the information. This common frame is identical to the compatibility relation ©4 5.
Frame ©4 (and analogously ©p) is then simply related to frame ©4 p[LSG86].

Cleatrly, as more aspects of geographic areas become of interest, the number and com-
plexity of the frames and compatibility mappings increase. However, there is a trade-off
between the complexity of individual frames and the complexity of the network of compat-
ibility mappings connecting them. We might define a single (complex) frame that encom-
passes all aspects of interest or, alternatively, define a (complex) network of frames (called
a gallery) that includes a distinet frame for each aspect of interest. These may not be
equivalent.

12



2.2.2 Analyzing the Evidence

Once a gallery has been established, the available evidence can be analyzed and interpreted.
The goal of this analysis is to establish a line of reasoning, based upon both the possibilistic
information in the gallery and the probabilistic information from the evidence, that deter-
mines the most likely answers to some questions. The gallery delimits the space of possible
situations, and the evidential information establishes the likelihoods of these possibilities.
Within an analysis, bodies of evidence are expressed relative to frames in the gallery, and
paths are established for the bodies of evidence to move through the frames by means of the
compatibility mappings. An analysis also specifies other evidential operations to be per-
formed, including whether multiple bodies of evidence are to be combined (fused) when they
arrive at common frames. Finally, an analysis specifies which frame and ultimate bodies of
evidence are to be used to answer each target question. Thus, an analysis specifies a means
of arguing from multiple bodies of evidence toward a particular (probabilistic) conclusion.
An analysis, in an evidential context, is the analogue of a proof tree in a logical context.

To begin, each body of evidence is expressed relative to a frame in the gallery. Each is
represented as a mass distribution (e.g., ma) over propositional statements discerned by a
frame (e.g., ©4):

ma:2%4 — [0,1]
Z ma(A) = 1
ACo,
mA(@) = 0

Intuitively, mass is attributed to the most precise propositions a body of evidence sup-
ports. If a portion of mass is attributed to a proposition A;, it represents a minimal com-
mitment to that proposition and all the propositions it implies. Additional mass attributed
to a proposition A; that is compatible with A;, but does not imply it (i.e., @ # AiNA; # A;),
represents a potential commitment: mass that neither supports nor denies that proposition
at present but might later move either way based upon additional information.

To interpret this body of evidence relative to the question A;, we calculate its support
and pleusibility to derive its evidential interval as follows:

Spt(A;) = Y mu(A)
A;QAJ‘
PIS(A_-;) = 1- Spt(@A — AJ)
[Spt(A;), Pls(A;)] € [0,1] .

The lower bound of an evidential interval indicates the degree to which the evidence
supports the proposition, while the upper bound indicates the degree to which the evidence
fails to refute the proposition, i.e., the degree to which it remains plausible. This evidential
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interval, for the most part, corresponds to bounds on the probability of A;. Thus, complete
ignorance is represented by an evidential interval of [0.0,1.0] and a precise probability
assignment is represented by the “interval” collapsed about that point (e.g., [0.7,0.7]).
Other degrees of ignorance are captured by evidential intervals with widths other than 0 or
1 (e.g., [0.6,0.8],[0.0,0.5],[0.9,1.0]).

If a body of evidence is to be interpreted relative to a question expressed over a dif-
ferent frame from the one over which the evidence is expressed, a path of compatibility
relations connecting the two frames is required. The mass distribution expressing the body
of evidence is then repeatedly translated from frame to frame, by means of compatibility
mappings, until it reaches the ultimate frame of the question. In translating m4 from frame
94 to frame ©p by means of compatibility mapping Ca g, the following computation is
applied to derive the translated mass distribution mp:

mp(B)= >  malA) .

Car-B (AE)=BJ'

Intuitively, if we (partially) believe A;, and A; implies B;, then we should have the
same (partial) belief in B;. This same method is applied to move mass distributions among
frames that represent states of the world at different times. However, when this is the case,
the operation is called projection.

Once two mass distributions m} and m% representing independent opinions are ex-
pressed relative to the same frame of discernment, they can be fused (i.e., combined) using
Dempster’s Rule of Combinetion. Dempster’s rule pools mass distributions to produce a
new mass distribution m? that represents the consensus of the original disparate opinions.
That is, Dempster’s rule produces a new mass distribution that leans towards points of
agreement between the original opinions and away from points of disagreement. Demp-
ster’s rule is defined as follows:

mi(A) = (1-k)7Y > mi(A)mi(A;)
A;ﬂAJ-=A,|,
F= Y mi(A)mi(A) £1

A;ﬁA,‘:@

Because Dempster’s rule is both commutative and associative, multiple (independent)
bodies of evidence can be combined in any order without affecting the result. If the initial
bodies of evidence are independent, then the derivative bodies of evidence are independent,
if they share no common ancestors. Thus, in the course of constructing an analysis, we
must ensure that evidence is propagated and combined in such a way to guarantee the
independence of the evidence at each combination.

Other evidential operations include discounting, summarization, and gisting (among oth-
ers). Discounting adjusts a mass distribution to reflect its source’s credibility (expressed
as a discount rate r € [0,1]). Summarization eliminates extraneous details from a mass

14



distribution by collecting all of the extremely small amounts of mass attributed to propo-
sitions and attributing the sum to the disjunction of those propositions. Gisting produces
the “central” Boolean-valued statement that captures the essence of a mass distribution.
This is particularly useful when explaining lines of reasoning.

3 Characterizing Geographic Areas

In implementing this formal approach, we have found that the gallery, frames, compatibility
relations, and analyses can all be represented straightforwardly as graphs consisting of nodes
connected by directed edges, and therefore we use Grasper II [Low86,Low78], a programming
language extension to LISP that introduces graphs as a primitive data type. A graph in
Grasper II consists of a set of labeled subgraphs. Each subgraph consists of a set of labeled
nodes and a set of labeled, directed edges that connect pairs of nodes. Each node, edge,
and subgraph has a value that can be used as a general repository for information. Once
the graphical representations have been established for the gallery, frames, compatibility
relations, and analyses, the remainder of the formal approach is easily implemented.

The first step is to define the gallery (Figure 5). In this case, we have selected VEGE-
TATION, TOPOGRAPHY, and INTERVISIBILITY as the three frames that will represent
the primitive characterizations of a geographical area. VEGETATION and TOPOGRA-
PHY are combined into a joint frame, which is in turn linked to a frame, EXPOSURE,
that attempts to capture the degree to which a helicopter may be exposed based on veg-
etation and terrain types.* INTERVISIBILITY measures the maximum altitude at which
the aircraft can fly without risking direct observation by a location known to contain hos-
tile forces; the higher this altitude, the less chance the helicopter has of being observed
at normal tactical altitudes. INTERVISIBILITY and EXPOSURE are combined, and this
combined frame is then related to an overall measure of RISK for the helicopter.

The next step is to define the frames in the gallery. Each of these is represented by a
subgraph sharing the same name as a node from the gallery. Each such subgraph includes
a node for each element of the frame and may include additional nodes representing aliases,
i.e., named disjunctions of elements. Each of these additional nodes have edges pointing
to elements of the frame (or other aliases) that make up the disjunction. The VEGETA-
TION frame (Figure 6) has four nodes representing vegetation types, as well as two aliases
(FOREST and VEGETATED). The TOPOGRAPHY frame (Figure 7) has four nodes
representing possible terrain types, plus one alias.

Each compatibility relation in the gallery is represented as a subgraph that includes
the nodes from the two interrelated frames with edges connecting the compatible elements.
For example, Figure 8 shows a portion of the INTERVISIBILIT Y &EXPOSURE-RISK
compatibility relation. Among other things, this relation indicates that ABOVE-LOW-
LEVEL&HIGH is compatible with either VERY-LOW-RISK or LOW-RISK.

After the gallery and its supporting frames and compatibility relations have been estab-
lished, evidential analyses can be constructed. These analyses are represented as data-flow

4This frame attempts to capture the notion thak in certain types of terrain, the helicopter is able to
become masked more easily than in others.
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Figure 5: The GEO-GALLERY Gallery.
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Figure 9: GEO-ANALYSIS1 Analysis.

graphs where the data and the operations are evidential. Figure 9 is one such analysis.
Here primitive bodies of evidence are shown as elliptical nodes, derivative bodies of evidence
are represented by circular nodes, and diamond-shaped nodes represent interpretations of
bodies of evidence. The values of these nodes contain the information (i.e., data) that
they represent (Figure 10). For bodies of evidence this information includes a frame of
discernment, a mass distribution, and other supporting information. Edges pointing to a
derivative node are labeled with the evidential operation that generates the body of evidence
represented by this node.

In the analysis to be performed for each geographic area, there are three primitive bodies
of evidence. These correspond to topographic information derived from a digital terrain
map, vegetation information provided by factor-overlays, and intervisibility information
provided by a pre-computed intervisibility map. The bodies of evidence derived from these
are shown in Figure 9.°> VEG1 indicates that the area is FOREST, which results in a mass-
function that distributes the entire unit of belief over the disjunction, DENSE-FOREST
or SPARSE-FOREST. TOP1 states there is a 60 percent chance that the terrain type is
MOUNTAINS, a 20 percent chance that it is HILLS, and 20 percent that it is either one.
IVISI allocates 30 percent of its evidential mass to a maximum visible height of ABOVE-

In these examples, the mass functions are the primary items of interest. They are indicated by MASS-
FUN: in the windows, and they are represented by a list of the form: ({{propll propl2 ...) mass1)({prop21
prop22 ...) mass2) ... ({propnl propn2 ...} massn)).
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Figure 10: Data from GEO-ANALYSIS].
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LOW-LEVEL, 30 percent toc CONTOUR, 20 percent to either ABOVE-LOW-LEVEL or
LOW-LEVEL, and 20 percent toc LOW-LEVEL alone.

Each of these bodies of evidence is discounted, reflecting a certain amount of doubt in the
credibility of these measurements. For example, DVEG1 in Figure 10 shows how the initial
specification of FOREST for the vegetation has been discounted to allow for a small amount
of mass (10 percent of the total) to be distributed to alternative possibilities. Following
Figure 9, the discounted bodies of evidence, DVEG1 and DTOP1 are each translated
into the VEGETATION&TOPOGRAPHY frame, and then fused; the result of this fusion
operation (the body of evidence shown as V&TF in Figure 9) is then translated first into
the EXPOSURE frame (EXP1) and then into the INTERVISIBILITY&EXPOSURE frame
(1&E1).® We have an interpretation node, IEXP1, depending from evidential node EXP1,
which shows that the first two bodies of evidence combine to provide significant evidence
for VERY-LOW exposure. Interpretation nodes of this sort enable us to track intermediate
results for propositions of interest.b After discounting IVIS1 and similarly translating the
result into the INTERVISIBILITY&EXPOSURE (1&E2), the new body of evidence is fused
with I&E1, and translated directly to the RISK frame (evidential node RISK1 in Figure
10).

In order to better understand the impact of this analysis in terms of interest to the
helicopter mission-planner, the results are interpreted. The node, IR1, provides an inter-
pretation in terms of the RISK aliases, SAFE, HAZARDOUS, and DANGEROUS, showing
intervals of (approximately) [.79,1.0}, [0.0,.21], and [0.0,0.1], respectively - the analysis
indicates this is likely to be a safe region. Figure 11 shows the result of performing this
analysis on each of the local areas of the original map.

Once such a prototypical analysis is developed, refined, and tested, the resulting data-
flow structures may be directly reduced to a Lisp procedure which may then be applied
to bodies of evidence previously constructed over the area of interest. Upon review of the
resulting primitive assessments, and the results of clustering operations, the user may decide
to modify this analysis structure, and reclassify. This is quite straightforward, given the
capability and flexibility of the Gister system.

4 Evidéntial-Reasoning Systems

Gister was originally developed to support the construction, modification, and interrogation
of evidential analyses, such as those described here. Gister provides an interactive, menu-
driven, graphical interface that allows these structures to be easily manipulated. The user
simply selects from a menu to add an evidential operation to an analysis, to modify operation
parameters (e.g., discount rates), or to change any portion of a gallery, including its frames
and compatibility relations. In response, Gister updates the analyses.

All of the figures in this paper are actual screen images from Gister. Figure 9 includes
the menus for working with analyses. On the left side of the screen is a menu of nouns. The

®These cascaded compatibility relations could have been combined into a single composite relation and
corresponding {ranslation.
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Figure 11: The RISK belief function resulting from an analysis of each local area (dark
areas indicate VERY-LOW-RISK).




user determines with what class of objects he wishes to work and selects the appropriate
noun from the menu. Once a noun has been selected, a menu of verbs appears on the right
side of the screen. A selection from this menu invokes the operation corresponding to the
selected verb on the previously selected noun. The user then designates the appropriate
nodes, edges, and the like for the selected operation.

5 Summary

Evidential reasoning has already been successfully applied to problems in several domains,
including multisensor integration for situation assessment and Naval Intelligence analysis.
The addition of the compatability relation to the theory of beliefs, the formalization and de-
velopment of new evidential operators, and the use of graphical representations have greatly
improved the overall usefulness and accessibility of these techniques. Further developments
carried out under this program of research have led to the ability to compile analysis net-
works into directly executable Lisp code, and to the ability to apply these directly to images
and image-like data. This approach seems to offer a great deal of flexibility in interactively
specifying appropriate knowledge sources and their use for characterizing geographic areas.
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