ﬁ maﬁam

ARCHITECTURE FOR
INTELLIGENT REACTIVE SYSTEMS

Technical Note 400

October 8, 1986

By: Leslie Pack Kaelbling =
© Artificial Intelligence Center
~ Computer and Information Sciences Division
and '
Center for the Stud}r of La.ngua.ge and Information
Stanford University

APPROVED FOR PUBLIC RELEASE:
DISTRIBUTION UNLIMITED

This work was supported in part by a gift from the Systems Development Foun-

- dation, in part by FMC Corporation under contract 147466 (SRI Project 7390),

- and in part by General Motors Research Laboratories under contra,ct 50-13 (SRI
Project 8662).

333 Ravenswood Avenue @ Menlo Park, CA94025-3403 = [415) 326-8200 = FAX (41‘;5)U26-oo|2 s Telex: 334486



Abstract

Any intelligent system that operates in a moderately complex or unpredictable en-
vironment must be resctive — that is, it must respond dynamically to changes in its
environment. A robot that blindly follows a program or plan without verifying that its
operations are having their intended effects is not reactive. For simple tasks in carefully
engineered domains, non-reactive behavior is acceptable; for more intelligent agents in
unconstrained domains, it is not.

This paper presents the outline of an architecture for intelligent reactive systems.
Much of the discussion will relate to the problem of designing an autonomous mobile
robot, but the ideas are independent of the particular system., The architecture is
motivated by the desires for modularity, awareness, and robustness.



Any intelligent system that operates in a moderately complex or unpredictable environ-
ment must be reactive — that is, it must respond dynamically to changes in its environment,
A robot that blindly follows a program or plan without verifying that its operations are hav-
ing their intended effects is not reactive. For simple tasks in carefully engineered domains,
non-reactive behavior is acceptable; for more intelligent agents in unconstrained domains,
it is not. .

This paper presents the outline of an architecture for intelligent reactive systems. Much
of the discussion will relate to the problem of designing an autonomous mobile robot, but
the ideas are independent of the particular system. The architecture is motivated by three
main desiderata:

Modularity: The system should be built incrementally from small components that are
easy to implement and understand.

Awareness: At no time should the system be unaware of what is happening; it should
always be able to react to unexepected sensory data.

Robustness: The system should continue to behave plausibly in novel situations and
when some of its sensors are inoperative or impaired.

Modularity

It is well-established principle of software engineering that the modular design of programs
improves modifiability, understandability and reliability [4]. The ability to combine simple
behaviors in different ways will facilitate experimentation in the design of a complex, reactive
system.

Brooks [5] has proposed a korizontal decomposition of a robot’s control system, in which
the fundamental units of the program are task accomplishing behaviors. Each behavior con-
sists of both an action and a perception component and may, in a structured manner, depend
on other behaviors in the system. This is in contrast with the standard approach, which
he refers to as vertical decomposition — namely, a division into many subsystems, each of
which is essential for even the most elementary behavior. Such a vertical decomposition
might include the following components: perception, modeling, planning, execution, and
effector control.

Horizontal decomposition is attractive because the system can be built and debugged
incrementally, allowing the programmer to test simple behaviors, then build more complex
ones on top of them. There are some difficulties involved in having perception distributed
throughout multiple behavior components, however. The first is that special-purpose per-
ception mechanisms tend to be weak. Raw sensory data is often noisy and open to a variety
of interpretations; to make perception robust, it is necessary to exploit the redundancy
of different sensor systems and integrate the information from many sources. The second
difficulty stems from the fact that, as behaviors become more sophisticated, they tend to
be dependent on conditions in the world, rather than on the particular properties of sensor
readings. A general perception mechanism can synthesize information from different sensors
into information about the world, which can then be used by many behaviors.



L. Sensor ad EItector Commangs
Iy a—— World T prtlan
__—-..’ -
—b Perception — Rction >
i -’ —_—m— _ H
Focus of Attention

Figure 1: Top-Level Decomposition

We propose a hybrid architecture with one major vertical division between the per-
ception component and the action component. There is to be a horizontal decomposition
within each of these components, but any of the action subcomponents may take advantage
of any of the perception component’s outputs. This component will be decomposed into
layers of abstraction, with uninterpreted sensor readings available at the lowest level and
sophisticated world models available at the highest level. The action component will consist
of a set of behaviors, each of which may undergo some further structural decomposition.

Figure 1 contains a block diagram of this architecture. The system receives raw data
from the sensors, and emits commands to the sensors and effectors. The action component
takes the output of the perception component as input and, as in the preceding case,
generates commands to both the sensors and effectors. This differs from many other systems,
in which control of the sensors is the responsibility of the perception component. In many
situations the sensors are a scarce resource; consequently, decisions must be made about
where to point the camera or which ultrasonic sensor to fire at a given time. What should
be done in such cases depends critically on the action strategy that is being followed at
the moment: Is the robot following a wall on the left? Is it trying to locate an object in
front of it? Since the action component is deciding on the strategy of the effectors, it is in
the best position to do so for the sensors as well. For the same reasons, if the perception
component is limited in the amount of processing it can do, the action component generates
an attention command to the perception component, indicating where its computing power
should be directed. It might focus attention on a particular region of the visual field, or on
a certain kind of object. The entire sensory data stream goes directly into the perception
component, along with the both the attention command of the action component and the
commands that were last sent to the effectors.

Awareness

For a robot to be truly aware of its environment, it must be designed in such a way that there
is a constant bound on the interval between the time the sensors get a particular reading



and the time the effectors can react to that information. Many robots simply “close their
eyes” while a time-consuming system, such as a planner or vision system, is invoked; the
penalty for such unawareness is that perceptual inputs are either lost or stacked up for later
processing. During this period of dormancy, a truly dynamic world might change to such
an extent that the results of the long calculation would no longer be useful. Worse than
that, something might happen that requires immediate action on the part of the robot, but
the robot would be oblivious of it.

Our approach to this problem is to have a number of processes that work at different
rates, We define a tick to be the constant minimum-cycle time for the entire system.
During each tick, the inputs are read, some computation is done, and the outputs are set.
If a process cannot complete its computation during its portion of a cycle, either because
its runtime is inherently non-constant, or has a large constant, it emits a signal indicating
that its outputs are not yet available, whereupon its state is saved for resumed execution
during the next tick. The Rex language, which is discussed below, allows such a system to
be easily constructed.

Robustness

Once again we propose a solution similar to that of Brooks [5]. His system is broken down
into levels of competence in such a way that, if higher levels break down, the lower levels
will still continue to work acceptably. This is especially important for Brooks, since his
levels are intended to be built on separate physical devices that can fail independently. Our
system, on the other hand, will be implemented on a single piece of hardware, so we will
concern ourselves with robustness only in relation to failed sensors or to the possibility of
general confusion because of new or unusual situations. We shall refer to these two types
of robustness as perceptual and behavioral.

Perceptual robustness can be achieved by integrating all sensory information into a
structure that represents the robot’s knowledge or lack of knowledge about the world. If
a particular sensor fails and its failure has been detected, the robot’s information about
the world will be weaker than it would have been if all of the sensors had been working
correctly. We say that the information I, carried by an agent is weaker than information
I' if and only if the set of possible worlds compatible with I is a superset of the set of
possible worlds compatible with I'. Thus, with weaker information, the robot can make
fewer discriminations among the states of the world, but it is can still be the case that that
information integrated from the remaining sensors will suffice for reasonable but degraded
operation. If a particular behavior depended entirely on a single sensor, there would be no
room for graceful degradation; it would simply fail. The problem of detecting sensor failure
is a difficult one that we shall not be examining here. Eventually, however, work in fault
detection mechanisms will have to be integrated into such a system.

Behavioral robustness depends upon the ability to trigger a system’s actions in direct
accordance with the strength of available information. Consider a behaviorally robust robot
with a high-level path-planning module that generates actions based on a strong model of
the environment. If the robot’s actual information is insufficient for the path planner to



produce a plan — perhaps because the robot had just been switched on or had become
lost or confused, that module will simply emit a signal indicating its inability to form a
plan. In that case, some less sophisticated module that is capable of operating with weaker
information will know what to do; its actions might be directed toward gaining sufficient
information to enable the first module to work and avoiding coming to any harm in the
process. Another example of behavioral robustness concerns the robot’s behavior in case any
of the necessary action-computing processes, such as planners or visual matching systems,
cannot run in real time. The high-level planning module may not know what to do for
severa] ticks until it has finished computing its plan; during this time, however, lower-level,
less competent action modules should be in control, attempting to maintain the status quo
and to keep the robot out of danger.

Building Real-time Systems
Rex

Rex is a language designed for the implementation of real-time embedded systems with
analyzable information properties [12,8]. It is similar to a hardware description language in
that the user declaratively specifies the behavior of a synchronous digital machine. John-
son [7], exploring the idea of using purely functional notation and recursion equations for
circuit description, found that it was indeed viable and, moreover, in many ways preferable
to standard techniques. He presents techniques for synthesizing digital designs manually
from recursion equations. In Rex, the programmer can use both recursion and functional
style, as well as having the specifications be translated automatically into hardware descrip-
tions. There are, however, many complex recursion equations that are not automatically
translatable into Rex. The declarative nature of Rex makes programs amenable to analysis
of semantic and behavioral properties. From a Rex specification, the compiler generates a
low-level structural description that can then be simulated by sequential code in C or Lisp.

The resulting machine description can be visualized as a large collection of integer
variables and code that updates them once per tick. The variables can be divided into
input, state, and output. The input variables, conceptually connected directly to the sensors,
contain current sensory values at the beginning of each tick. The state variables are updated
during each tick as a combined function of the values of the input variables and the old
values of the state variables. The output variables, conceptually connected to the effectors,
are updated during each tick as a combined function of the inputs and the old values of the
state variables. Rex can be thought of as specifying a function F : I't* — I*%°, where 1,s,
and o are the numbers of input, state, and output variables, respectively, that maps the
values of the inputs and the old values of the state variables into new values of the state
variables and outputs. For any machine specified in Rex, the function F' is guaranteed to
be calculable in constant time. This in turn guarantees that the minimum reaction time
(minimum time required for the value of an input to affect the value of an output) also has
a constant bound, therey making all machines defined in Rex real-time.



Embedding Slow Processes in Fast Systems

As control systems become more sophisticated, they almost always involve planning of some
sort. David Chapman has shown that a general planning problem is undecidable and that
many restricted planning problems are intractable [6]; we must therefore consider methods
for embedding processes that do not operate in constant time in systems with a constant
tick rate. The intractability of planning, as well as other time-consuming problems, usually
stems from the need for graph search. There are two methods for implementing search
procedures in real-time systems. The first is to exploit the power of parallel processing and
devote a large amount of dedicated hardware to doing the search in constant time. The
second method is to conserve hardware and to search by using a conventional algorithm,
such as backtracking, but to guarantee that the searching process will be “swapped out” in
such a way that other processes are assured a chance to react to inputs in real time.

Production systemns are often used to perform search and inference in problem solving
and planning systems. In many of these systems, the rules are fixed and cannot be changed
during execution. If this is the case, an inference net [13] can be explicitly implemented in
hardware, allowing all search and inference to take place in parallel in constant time that
is proportional to the maximum depth of the net. For many problems, the inference net
will require less space than would have been needed to encode a rule interpreter and the
production rules implicitly embodied by the net.

In general, any computation can trade time for space. Thus, if sufficient computing
hardware is not available to implement large searching processes in parallel, they may be
serialized and run on general-purpose hardware. Von Neumann computer architecture is
an extreme example of this; it allows huge programs to be run on a very small amount of
hardware, trading time for space. We propose a middle ground for embedding processes like
planners into real-time systems, using general-purpose searching hardware for the processes
that involve search, and iterating the searching process over time, while the other processes
continue o run in parallel with it.

Planning

There are two problems that arise when a planner is run in a dynamic environment. The
first is that, if the planner takes control of the processor, the robot can no longer respond,
even at a reflex level, to events in the environment. The second problem is that, during the
process of planning, the environment may have changed to such an extent that the newly
created plan is no longer executable in the current situation.

A solution to the first problem is for the planner to work incrementally, doing a few
computation steps during each state transition, then storing its state until the next tick.
Other parts of the systemn that react more quickly to changes in the environment will be
running in parallel with the planner, and will therefore be able to act even if the planner
has not finished its computation. This behavior is in contrast to that of a program that
“calls” the planner and waits for it to finish executing before doing anything else. When
the planner is finished, it issues the plan; until that time, it emits a signal that says it is not



Goal Current Done?
’ Goel 1terative
Planning
Context System o
world 1 conditions an

Figure 2: Schematic of an Embedded Planner

ready yet and has no answer. The specification of a planner that works incrementally and
saves its state is written easily in Rex. A similar system might also be constructed using
an operating system with message passing and a round-robin scheduler. This would make
it possible for other processes to respond to external events while the planner is working,
although the informational analysis of the Rex version would be much more tractable.

A planner is typically given a description of some initial state and a goal, and then
activated. The planner constructs a plan that depends on the truth of some of the conditions
in the imitial state; we shall call these contezt conditions. The rest of the initial state is
either irrelevant to the plan (for instance, the temperature is irrelevant to planning to go
down the hall), or can be handled conditionally during plan execution (the robot might
assume that it can navigate around local obstacles without planning). A planner embedded
in a real-time system must be especially conscious of its context conditions; otherwise it
cannot know whether the plan it is working on will be valid when it is done.

In Figure 'we present a schematic diagram of a planner that works flexibly in dynamic
environments. Its inputs are a goal and the output of the world model; its outputs are a
plan and a signal as to whether or not the plan is ready. When it is given a new goal, it
remembers that goal and the current values of the context conditions in its local state. It
begins planning with respect to those values of the goal and context conditions until the
plan has been completed or until the goal or context conditions in the world differ from
those that are stored in the planner.

If the goal or context conditions change before the completion of the plan, the planner
stores their new values and begins planning again. This scheme has the property that the
planner will notice at the earliest instant if its plan is no longer valid because of a change
in goal or context conditions, and will therefore start working on a new one. The planner
might be made more efficient if, when the goal or context is changed, it tried to salvage parts
of the plan in progress. It is true that, if the context conditions or goal vary too rapidly,
the planner will never succeed in generating a plan. This would happen only if the planner
were not written with adequate generality for the environment in which it is embedded.
One way to simplify the design of embedded planners, as well as to make the planning



process more efficient, is to use many small planners that are domain-dependent, rather
than one large, general, domain-independent planner. Much of the domain knowledge can
be “procedurally represented” in a domain-dependent planner, eliminating the need for its
runtime manipulation.

The Perception Component

As in the domain of actions, perception can be done at many levels of abstraction. Normally,
the higher the level of abstraction, the more processing power is required to integrate new
information. Thus, we will break the perception component of this architecture down
into several levels of abstraction that can be made to work at different speeds, using the
techniques that were applied to the planner in the preceding section. At the lowest level,
we might simply store the most recent raw perceptual readings. Since this level requires
no interpretation or integration, the data are immediately available to highly time-critical
behavior components, such as obstacle-avoidance reflexes. More advanced behaviors will
require information that is more robust and abstract. Eventually this will culminate in a
representation that integrates data from all of the sensors into a coherent world model. The
world model itself might exist at various levels of abstraction, from Cartesian locations of
obstacles, to a topological map of interconnections of hallways, doors, and rooms.

It is important to note that these levels of perception may have no direct mapping to
the levels of competence in the action component. The highest level of action competence
will consist of behaviors at many different levels of abstraction; it thus relies on many or
all of the layers of the perception component. It is likely however, that the lower action
levels will not make use of the higher perception levels, thereby allowing each of the majore
components to be constructed incrementally.

For a system to be behaviorally robust, the representation of perceptual data must
explicitly encode the robot’s knowledge and lack of knowledge about the world. If we
consider the propositional case, the robot can stand stand in three relations to a proposition
w: it can know that ¢ holds (K ()), it can know that ¢ doesn’t hold (K (—¢)), or it can be
unaware as to whether ¢ holds (=K () A K (—p)). If ¢ were the proposition “I'm about
to run into the wall,” we might have the following set of action rules:

K(p) — stop
K(-p) — go
-K(p) A-K(—~p) — stop Alook_for_wall

These rules do something reasonable in each case of the robot’s knowledge, or lack thereof,
guaranteeing that it won’t hit the wall but will go forward if it knows that such a collision
is not imminent. It also tries to strengthen its information in case of uncertainty. For many
applications, this approach may have to be extended to the probabilistic case, substituting
P(p) > a — a for K(p) —+ @, where a is the necessary degree of belief in the proposition
© to make o an appropriate action. We would similarly substutute P(p) < b for =K ()
and b < P(p) < afor ~K(p) A -K(-p).



Framework for Adaptive Hierarchical Control

In this section we present a scheme for the hierarchical decomposition of robot control in
terms of compositions of behaviors. We define a bekavior to be a procedure that maps a set
of inputs, which in this case are the outputs of the perception module, into a set of outputs
to the effectors of the system. Each behavior is has the same input/output structure as the
action module in Figure 1, with possibly some additional outputs that are intended to be
used internally. To compose behaviors, we use procedures called medietors. A mediator’s
inputs are outputs of several subbehaviors and the the perception module. Since it generates
outputs of the same type as a behavior, the complex module consisting of the subbehaviors
and a mediator is itself a behavior.

Mediating Behaviors

One scheme for mediation between subbehaviors, described by Kurt Konolige [9], is a “bid-
ding” system in which each behavior outputs in the form of sensor effector commands not
only what it wants to do, but also some measure of its “desire” to do it. The mediator
decides what to do on the basis of some weighted average of the the outputs of the sub-
behaviors and their respective degrees of urgency. There are two possible difficulties with
such a scheme. One is that, when the behaviors are at a higher level than simple motor
control, the mediation will have to be more than a simple average; for example, a robot
performing the average. of going to office A and office B probably won’t get far. A logical
response to this difficulty is that the two behaviors (the office A behavior and the office
B behavior) would have to know something about each other, and so would only request
actions that are compatible. But this seems to require mediation again, albeit internal to
the behaviors, and it brings us to the second difficulty. One of the greatest advantages of a
compositional methodology is that a particular component can be independently designed
and tested, then used in more than one place in a system. In Konolige’s approach there
is something crucially context dependent about each low-level behavior, since its urgency
parameters will have to be tuned for each specific application, depending on what other
behaviors it is being combined with.

One approach that appears to overcome these difficulties is to move all the intelligence
governing behavior selection into the mediator function itself. In this scheme, the mediator
would take the outputs of the subbehaviors, as well as the world model and other perceptual
data, as inputs. Then, on the basis of these data, the mediator could output some weighted
combination of the input behaviors or, alternatively, simply switch through the output of a
particular behavior. If there are very different effectors, it might make sense to perform part
of one behavior and part of another; for example, a walking and a talking behavior could
be mediated by outputting the speech commands of the talker and the motor commands of
the walker. Each behavior can be designed and debugged independently, then used without
modification as a building block for other, more complex behaviors. Another advantage of
this approach is that proofs of correctness of complex behaviors can be done compositionally.
A proof involving a complex behavior need only involve the switching behavior of the



mediator and those properties of the subbehaviors that can be proved independently.

Hierarchically Mediated Behaviors

We will approach the the design of a robot’s action component as a top-down decomposition
of behaviors into lower-level behaviors and mediators. At the top level, adopting the scheme
of Brooks, we have a number of behaviors that represent different levels of competence at
executing the main task of the system. Each behaviors, unlike those of Brooks, computes its
outputs independently of the outputs of the other modules. Included in the set of possible
outputs of each behavior is no-command, a signal denoting that that behavior doesn’t know
what to do in the current situation. We have some intuitive idea of what competence is,
and, given two modules, can make subjective judgements about which works “better.,” We
hope to formalize the notion of what makes one action or strategy better than another
with respect to some goal; since that has not yet been done, however, the balance of this
discussion must be based on our intuitive understanding of “better.” If the following four
properties hold of a system whose top-level mediation function switches through the entire
output of the most competent behavior that knows what to do, the system as a whole will
always do the best thing of which it is capable, given the available information.

The lowest level of competence never outputs no-command

No level emits a command other than no-command unless it is a correct command

Lower levels of competence require weaker information

If any two levels both emit conmands in the same tick, the output of the higher level
is better

Thus, if the more competent levels fail or have insufficient information to act, the robot
will be controlled by a less competent level that can work with weak information until the
more competent components recover and resume control.

Within each of the levels of competence, decomposition is based on abstraction rather
than competence. The highest-level behavior is constructed by mediating among medium-
level behaviors. Those behaviors are constructed by mediating among low-level behaviors.
The structure will typically be a graph rather than a tree, since many high-level behaviors
will ultimately be constructed from a few low-level ones. In practice, it will also happen
occasionally that the hierarchy will not be strict; that is, a certain behavior might be present
at two different levels in the graph.

There has been other work exploring the use of a hierarchy of abstraction for reactive
control. James Albus [1,2,3] in the RCS (Real-time Control System), employs an abstraction
hierarchy of “multivariant servos” for controlling factory automation systems. Although his
approach is similar to ours, it does not allow the simultaneous combining of components
of more than one behavior, even if they are potentially compatible. This is equivalent to
having the mediating functions always switch through one entire behavior. Nils Nilsson has
proposed using triangle tables as a robot programming language[11]. They were originally
used in the SRI robot Shakey [10] for plan execution monitoring, but the formalism can be
extended to hierarchical systems that are very much like the one described by Albus.

10



World
Model

Avoid
Dbstacles

Command
~ip-

'F’ Level 2

L-b Level |

Figure 3: Example of Hierarchies of Competence and Abstraction. {The shaded boxes are
mediators).

Example

‘We shall now present an example that illustrates the methods of hierarchical decomposition
discussed in the preceding section. After sketching the top-level decomposition of a complex
behavior into levels of competence, we will show how the most competent module is broken
down into levels of abstraction. A block diagram of this example is presented in Figure 3.

The task of this robot is to traverse a very long hall without crashing into anything. It is
more important to avoid crashes than to get to the end of the hall. The robot’s construction
is such as to make it highly unlikely that it can roll straight down the hall without veering
into the sides unless it corrects its course along the way. The robot has distance sensors
pointing forward and to each side. We decompose this problem into three behaviors at
different levels of competence, as follows:

Level 1 This behavior looks at accumulated raw sensor data. If any of the measurements
in taken from the front of the robot too short, or a significant interval has elapsed
since the last measurement was made by the front sensor, it stops; otherwise it moves
forward.

Level 2 This behavior also locks at accumulated raw sensor data. As in the preceding

11



behavior, it stops if the measurements are too short or too old. If it has stopped and
cannot move forward, but the sensor data imply that it is safe to turn, the robot turns
until the sensor data are no longer too short, then moves. If it isn’t save to turn, it
emits no-command.

Level 3 This behavior looks at data that has been combined at a higher level of abstraction.
It can tell whether there is a wall to the front or side, how far away it is, and how tight
the bounds on its knowledge of its position are. If it knows that there is no wall too
close to it,! and knows fairly tight bounds on the locations of the walls on either side,
it moves in such a way as to go forward in the middle of the hall, staying parallel to
the walls, If it doesn’t know this, it emits no-command.

This set of behaviors satisfies the rules given above for a correct decomposition. The
lowest level always either moves or stops. Each level acts only when it knows the particular
action is safe — that is, when executing it will not cause the robot to crash into something,
The lowest level requires only sensor readings, which, although weak, are available instantly.
The second level requires information about whether it is safe to turn; this information,
stronger than that needed by the first level, must be synthesized from the raw sensor
readings. The highest level requires very strong wall-location data that must be derived
from the aggregation of many sensor readings and knowledge about the world. I each level
knows what to do, it is intuitively obvious that the highest-level behavior is “best.” It is
better to proceed along a hall by staying parallel to the walls than by zig-zagging from side
to side (which is what the second behavior is likely to do), or just by going to one side of
the hall and stopping when obstructed.

The highest level of competence can be divided into subbehaviors at different levels of
abstraction, as shown in Figure 3. The first division is into a behavior that stays parallel to
the walls on the sides and one that causes the robot to slow down linearly as a function of its
distance to an obstacle in front of it. Each of these behaviors is composed of subbehaviors
that cause the robot to move at certain velocities and request certain sensor measurements.
Let us assume that each behavior consists of a motor command and sensor command (the
robot can poll only one sensor at a time).

Then, in pseudocode, the follow-walls behavior is

sanacr-command := if left-info-weak then left-sensor
alae if right-info-weak then right-sensor
else *nocop*
motor-command := if K-locatlon-of-left-wall and
E-locatlon-of-right-wall then aervo-to-midline
elge *no-commands*

This behavior requests a sensor measurement if it has weak information about one side
or the other, and returns *noop* if it has no immediate need for sensor information. If it
knows the location of the left and right walls to a close enough tolerance, it performs the
behavior that servos to the middle line of the hallway; otherwise, it emits *no-command+,
indicating that it does not know what to do.

1A wall is too close to the robot if it will crash into the wall unless it begins its stopping action immediately.

12



The no-crash behavior is described by

sensor-commend := if front-info-weak then front-senmscr
alse *noop*

motor-command := if K-location-of-front-obetacle then linear-speed-limit
alse *no-command*

This behavior requests a sensor measurement from the front sensor if it needs it and, if
it knows the location of the nearest obstacle in front to sufficient tolerance, it performs the
behavior that causes the robot slow down in proportion its distance from the obstacle. If
it does not know that location, we emit *no-command™.

Now it remains only to combine these two behaviors. The mediator is

pensor-command := if no-crash-eensor-command = *noop*
then follow-vall-sansor-command
elee pno-crash-sensor-command
motor-commend :w= if (follow-wall-motor-command = *no-command+*) or
(no-crash-motor-command = *no-commandx*)
then *no-commandx*
alse rescale (follow-wall-motor-command, no-crash-motor-command)

If the no-crash hehavior does not request a sensor command, the mediator does what
the follow-wall behavior wants to do; otherwise it does what the no-crash behavior wants
to do. This gives priority to acquiring information that is relevant to the more important
goal of avoiding obstacles. If either motor command is *no-command*, the motor command
of the mediator will be the same. If both motor commands are defined, the wall-following
motor command defines a set of differential velocities for maintaining the heading of the
robot down the center of the hall and the crash-avoidance motor command defines a limit
for safe speed, given the knowledge of the distance to obstacles in front of the robot. These
values are input to the function rescale which performs a ratiometric scaling of the servo
velocities. This is done so that neither velocity will them exceed the speed limit, but their
ratio will maintained.

Future Work

This methodology has been applied to simple tasks, such as the one described above, with
a large degree of success. As well as expanding the implemented example, we will continue
research on the formal specification of goals and the ranking of the “goodness” of behav-
iors with respect to particular sets of goals. The problem of perceptual organization also
requires more attention, with the aim of devising algorithms that use predictions about the
environment from old information to facilitate analysis of new information.

Acknowledgments

This research was done in the context of programming the SRI Artificial Intelligence Cen-
ter’s mobile robot to perform hallway navigation tasks. Many of these ideas arose from
discussions with Stan Rosenschein, and debugging sessions with Stan Reifel and Sandy
Wells.

13



References

(1] Albus, James S., 1981: Brains, Behavior, and Robotics (BYTE Books, Subsidiary of
McGraw-Hill, Peterborough, New Hampshire).

[2] Albus, James S., Anthony J. Barbera, and Roger N. Nagel, 1981: “Theory and Practice
of Hierarchical Control,” Proc. 28rd IEEE Computer Society International Conference
(September).

[3] Barbera, Anthony J., M. L. Fitzgerald, James S. Albus, and Leonard S. Haynes, 1984:
“RCS: The NBS Real-time Control System,” Proc. Robots § Conference and Ezposition,
Detroit, Mickigan (June).

[4] Booch, Grady, 1983: Software Engineering with Ada (The Benjamin/Cummings Pub-
lishing Company, Menlo Park, California).

[5] Brooks, Rodney, A., 1985: A Robust Layered Control System for ¢ Mobile Robot (A. 1.
Memo 864, MIT Artificial Intelligence Laboratory, Cambridge, Massachusetts).

[6] Chapman, David, 1985: Planning for Conjunctive Goals (Technical Report 802, MIT
Artificial Intelligence Laboratory, Cambridge, Massachusetts).

[7] Johnson, Steven D., 1983: Synthests of Digital Designs from Recursion Equations (The
MIT Press, Cambridge, Massachusetts).

[8] Kaelbling, Leslie Pack, 1986: Rez Programmer’s Manual (Technical Note 381, Artificial
Intelligence Center, SRI International, Menlo Park, California).

[9] Konolige, Kurt, 1986: personal communication.

[10] Nilsson, Nils J., 1984: Shakey the Robot (Technical Note 323, Artificial Intelligence
Center, SRI International, Menlo Park, California).

[11] Nilsson, Nils J., 1985: Triangle Tables: A Proposal For A Robot Programming Language
(Technical Note 347, Artificial Intelligence Center, SRI International, Menlo Park,
California).

[12] Rosenschein, Stanley J. and Leslie Pack Kaelbling, 1986: “The Synthesis of Digital Ma-
chines with Provable Epistemic Properties,” Proc. Conference on Theoretical Aspects
of Reasoning About Knowledge, Asilomar, California, pp. 83-98.

[13] Winston, Patrick Henry, 1984: Artificial Intelligence, second edition (Addison Wesley,
Reading, Massachusetts), pp. 181-187.

14



