
Dialog Act Modeling for Conversational SpeechAndreas Stolcke and Elizabeth Shriberg, SRI InternationalRebecca Bates, Boston University Noah Coccaro and Daniel Jurafsky, University of Colorado at BoulderRachel Martin, Johns Hopkins University Marie Meteer, BBN Technologies Klaus Ries, Carnegie Mellow UniversityPaul Taylor, University of Edinburgh Carol Van Ess-Dykema, Department of DefenseAbstractWe describe an integrated approach for statisticalmodeling of discourse structure for natural conversa-tional speech. Our model is based on 42 `dialog acts'(e.g., Statement, Question, Backchannel, Agreement,Disagreement, Apology), which were hand-labeled in1155 conversations from the Switchboard corpus ofspontaneous human-to-human telephone speech. Wedeveloped several models and algorithms to automati-cally detect dialog acts from transcribed or automati-cally recognized words and from prosodic properties ofthe speech signal, and by using a statistical discoursegrammar. All of these components were probabilisticin nature and estimated from data, employing a vari-ety of techniques (hidden Markov models, N-gram lan-guage models, maximum entropy estimation, decisiontree classi�ers, and neural networks). In preliminarystudies, we achieved a dialog act labeling accuracy of65% based on recognized words and prosody, and anaccuracy of 72% based on word transcripts. Since hu-mans achieve 84% on this task (with chance perfor-mance at 35%) we �nd these results encouraging.IntroductionThe ability to model and automatically detect dis-course structure is essential as we address problemssuch as understanding spontaneous dialog (a meetingsummarizer needs to know who said what to whom),building human-computer dialog systems (a conversa-tional agent needs to know whether it just got askeda question or ordered to do something), and simpletranscription of conversational speech (utterances withdi�erent discourse function also have very di�erentwords). This paper describes an e�ort to automatethe annotation of natural dialog at the level of dia-log acts (DAs), a shallow �rst level of analysis that isessential to the tasks mentioned. Table 1 shows a sam-ple of the kind of discourse structure we are modelingand detecting. Each utterance is categorized into oneof several utterance types according to syntactic andpragmatic criteria.Our approach was to build statistical models for var-ious aspects of dialog acts, such as their lexical re-alizations, prosodic characteristics, and sequence dis-

tribution, and to integrate these into a probabilisticDA detector. There are many excellent previous at-tempts to build predictive, stochastic models of dia-log structure (Kita et al. 1996; Mast et al. 1996;Nagata & Morimoto 1994; Reithinger et al. 1996;Suhm & Waibel 1994; Taylor et al. 1997; Woszczyna& Waibel 1994; Yamaoka & Iida 1991), and our e�ortis in many ways inspired by this work. Our projectextends this earlier work, particularly in its scale; ourmodels were trained on an order of magnitude moredata than any previous system. In addition, whereasprevious work has largely dealt with constrained, task-oriented dialog, our focus is on unconstrained, sponta-neous conversation. Finally, we believe our approachto model integration, in particular our use of automat-ically recognized words, to be novel. A more completeaccount of this work can be found in Jurafsky et al.(1997).The Dialog Act Labeling TaskThe data consisted of a substantial portion of the wave-forms and corresponding transcripts from the Switch-board corpus of conversational telephone speech (God-frey, Holliman, & McDaniel 1992) distributed by theLinguistic Data Consortium (LDC). The raw Switch-board data is not segmented in a linguistically consis-tent way; we therefore made use of a version that hadbeen hand-segmented at the utterance level (Meteer &others 1995). Automatic segmentation of spontaneousspeech is an open research problem in its own right(Mast et al. 1996; Stolcke & Shriberg 1996), but wedecided not to confound the DA detection task withthe additional problems introduced by automatic seg-mentation.We chose to follow a recent standard for shallow dis-course structure annotation, the Dialog Act Markup inSeveral Layers (DAMSL) tag set, which was recentlydesigned by the natural-language processing commu-nity (Core & Allen 1997). We began with this markupsystem and modi�ed it in several ways to make it moreuseful for our corpus. The tag set distinguishes 42mutually exclusive utterance types; Table 2 shows the10 most frequent categories with examples and rela-



Table 1: A fragment of a labeled switchboard conversation.Spkr Dialog Act UtteranceA Wh-Question What kind do you have now?B Statement Uh, we have a, a Mazda nine twenty nine and a FordCrown Victoria and a little two seater CRX.A Acknowledge-Answer Oh, okay.B Opinion Uh, it's rather di�cult to, to project what kind of, uh, -A Statement we'd, look, always look into, uh, consumer reports to see what kindof, uh, report, or, uh, repair records that the various cars have {B Turn-Exit So, uh, -A Yes-No-Quest And did you �nd that you like the foreign cars better than the domestic?B Answer-Yes Uh, yeah,B Statement We've been extremely pleased with our Mazdas.A Backchannel-Quest Oh, really?B Answer-Yes Yeah.tive frequencies. A detailed description of the labelingsystem can be found in Jurafsky, Shriberg, & Biasca(1997).Note that our tag set incorporates both tradi-tional sociolinguistic and discourse-theoretic rhetoricalrelations/adjacency-pairs as well as some more-form-based labels. Furthermore, the tag set is structuredso as to allow labelers to annotate a Switchboard con-versation in about 30 minutes, and without having tolisten to each utterance. Without these constraints thetag set might have included some �ner distinctions, butwe felt that this drawback was balanced by the abilityto cover a large amount of data.Labeling was carried out in a three-month periodby eight linguistics graduate students at CU Boulder.Inter-labeler agreement was 84%, resulting in a Kappastatistic of 0.80. The Kappa statistic measures agree-ment normalized for chance; values of 0.8 or higher areconsidered considered high reliability (Carletta 1996).A total of 1155 Switchboard conversations were la-beled, comprising 205,000 utterances and 1.4 millionwords. The data was partitioned into a training setof 1115 conversations (1.4M words, 198K utterances),used for estimating the various components of ourmodel, and a test set of 19 conversations (29K words,4K utterances). Remaining conversations were setaside as future test sets.Hidden Markov Modeling of DialogOur goal is to perform DA classi�cation using a proba-bilistic framework, giving us a principled approach forcombining multiple knowledge sources (using the lawsof probability), as well as the ability to derive modelparameters automatically from a corpus, using statis-tical inference techniques.Given all available evidence E about a conversation,the goal is to �nd the DA sequence U that has the high-est posterior probability P (U jE) given that evidence.Applying Bayes' Rule we getU� = argmaxU P (U jE)

= argmaxU P (U )P (EjU )P (E)= argmaxU P (U )P (EjU ) (1)Here P (U ) represents the prior probability of a DA se-quence, and P (EjU ) is the likelihood of U given the ev-idence. The likelihood is usually much more straight-forward to model than the posterior itself. This hasto do with the fact that our models are generative orcausal in nature, i.e., they describe how the evidenceis produced by the underlying DA sequence U .Estimating P (U ) requires building a probabilisticdiscourse grammar, i.e., a statistical model of DA se-quences. We did so using familiar techniques from lan-guage modeling for speech recognition, although thesequenced objects in this case are DA labels ratherthan words.Dialog act likelihoodsThe computation of likelihoods P (EjU ) depends onthe types of evidence used. In our experiments weused the following sources of evidence, either alone orin combination:Transcribed words: The likelihoods used in Eq. 1are P (W jU ), where W refers to the true (hand-transcribed) words spoken in a conversation.Recognized words: The evidence consists of recog-nizer acoustics A, and we seek to compute P (AjU ).As described later, this involves considering multiplealternative recognized word sequences.Prosodic features: Evidence is given by the acousticfeatures F capturing various aspects of pitch, dura-tion, energy, etc., of the speech signal; the associatedlikelihoods are P (F jU ).To make both the modeling and the search for thebest DA sequence feasible, we further require that ourlikelihood models are decomposable by utterance. Thismeans that the likelihood given a complete conversa-tion can be factored into likelihoods given the individ-



Table 2: The 10 most frequent (out of 42) dialog act labels.Tag Abbrev Example %Statement-non-opinion sd Me, I'm in the legal department. 36%Acknowledge (Backchannel) b Uh-huh. 19%Statement-opinion sv I think it's great 13%Agree/Accept aa That's exactly it. 5%Abandoned or Turn-Exit % So, -/ 5%Appreciation ba I can imagine. 2%Yes-No-Question qy Do you have to have any special training? 2%Non-verbal x <Laughter>,<Throat clearing> 2%Yes answers ny Yes. 1%Conventional-closing fc Well, it's been nice talking to you. 1%ual utterances. We use Ui for the ith DA label in thesequence U , i.e., U = (U1; : : : ; Ui; : : : ; Un), where n isthe number of utterances in a conversation. In addi-tion, we use Ei for that portion of the evidence thatcorresponds to the ith utterance, e.g., the words or theprosody of the ith utterance. Decomposability of thelikelihood means thatP (EjU ) = P (E1jU1) � : : : � P (EnjUn)Applied to the three types of evidence introducedearlier, it is clear that this assumption is not strictlytrue. For example, speakers might tend to reuse wordsfound earlier in the conversation, violating the inde-pendence of the P (WijUi). Similarly, speakers mightadjust their pitch or volume over time, e.g., to the con-versation partner, violating the independence of theP (FijUi). As in other areas of statistical modeling, wecount on the fact that these violations are small com-pared to the properties actually modeled, namely, thedependence of Ei on Ui.Markov modelingReturning to the prior of DA sequences P (U ), it isconvenient to make certain independence assumptionshere, too. In particular, we assume that the prior dis-tribution of U is Markovian, i.e., that each Ui dependsonly on a �xed number k of preceding DA labels:P (UijU1; : : : ; Ui�1) = P (UijUi�k; : : : ; Ui�1)(k is the order of the Markov process describing U ).The N-gram based discourse grammars we used havethis property. As described later, k = 1 is a very goodchoice, i.e., conditioning on the DA types more thanone removed from the current one does not improvethe quality of the model by much.The importance of the Markov assumption for thediscourse grammar is that we can now view the wholesystem of discourse grammar and local utterance-based likelihoods as a kth-order hidden Markov model(HMM) (Rabiner & Juang 1986). The HMM statescorrespond to DAs, observations correspond to utter-ances, transition probabilities are given by the dis-course grammar, and observation probabilities are

given by the local likelihoods P (EijUi). This allowsus to use e�cient dynamic programming algorithms tocompute the relevant aspects of the model, such as� the most probable DA sequence (the Viterbi algo-rithm)� the posterior probability of various DAs for a givenutterance, after considering all the evidence (theforward-backward algorithm)Dialog act decodingThe Viterbi algorithm for HMMs �nds the globallymost probable state sequence. When applied to adiscourse model with locally decomposable likelihoodsand Markovian discourse grammar, it will therefore�nd precisely the DA sequence with the highest poste-rior probability:U� = argmaxU P (U jE)The combination of likelihood and prior modeling,HMMs, and Viterbi decoding is fundamentally thesame as the standard probabilistic approaches tospeech recognition (Bahl, Jelinek, & Mercer 1983) andtagging (Church 1988). It maximizes the probabilityof getting the entire DA sequence correct, but it doesnot necessarily �nd the DA sequence that has the mostDA labels correct (Stolcke, Konig, & Weintraub 1997).To minimize the overall utterance labeling error, weneed to maximize the probability of getting each DAlabel correct individually, i.e., we need to maximizeP (UijE) for each i = 1; : : : ; n. We can compute theper-utterance posterior DA probabilities by summing:P (ujE) = XUi=uP (U jE)where the summation is over all sequences U whose ithelement matches the label in question. The summationis e�ciently carried out by the forward-backward algo-rithm for HMMs.For 0th-order (unigram) discourse grammars,Viterbi decoding and forward/backward decoding al-ways yield the same results. However, for higher-orderdiscourse grammars we found that forward-backward



Table 3: Perplexities of dialog acts with and withoutturn information.Discourse grammar P (U ) P (U; T ) P (U jT )None 42 84 42Unigram 11.0 18.5 9.0Bigram 7.9 10.4 5.1Trigram 7.5 9.8 4.8decoding consistently gives slightly (up to 1% absolute)better accuracies, as expected. Therefore, we used thismethod throughout.Discourse GrammarsThe statistical discourse grammar models the priorprobabilities P (U ) of DA sequences. In the case ofconversations for which the identities of the speakersare known (as in Switchboard), the discourse grammarshould also model turn-taking behavior. A straightfor-ward approach is to model sequences of pairs (Ui; Ti)where Ui is the DA label and Ti represents the speaker.We are not trying to model speaker idiosyncrasies, soconversants are arbitrarily identi�ed asA orB, and themodel is made symmetric with respect to the choice ofsides (e.g., by replicating the training sequences withsides switched). Our discourse grammars thus had avocabulary of 42 � 2 = 84 labels, plus tags for thebeginning and end of conversations.N-gram discourse modelsA computationally convenient type of discourse gram-mar is an N-gram model based on DA tags, as it allowse�cient decoding in the HMM framework. We trainedstandard backo� N-gram models (Katz 1987), usingthe frequency smoothing approach of Witten & Bell(1991). Models of various orders were compared bytheir perplexities, i.e., the average number of choicesthe model predicts for each tag, conditioned on thepreceding tags.Table 3 shows perplexities for three types of mod-els: P (U ), the DAs alone; P (U; T ), the combinedDA/speaker ID sequence; and P (U jT ), the DAs con-ditioned on known speaker IDs (appropriate for theSwitchboard task). As expected, we see an improve-ment (decreasing perplexities) for increasing N-gramorder. However, the incremental gain of a trigram issmall, and higher-order models did not prove useful.Comparing P (U ) and P (U jT ), we see that speakeridentity adds substantial information, especially forhigher-order models.Other discourse modelsWe also investigated non-N-gram discourse models,based on various language modeling techniques knownfrom speech recognition. One motivation for alterna-tive models is that N-grams enforce a one-dimensional

representation on DA sequences, whereas we saw abovethat the event space is really a multidimensional event(DA label and speaker labels). Another motivation isthat N-grams fail to model long-distance dependencies,such as the fact that speakers may tend to repeat cer-tain DAs or patterns throughout the conversation.The �rst alternative approach was a standard cachemodel (Kuhn & de Mori 1990), which boosts the prob-abilities of previously observed unigrams and bigrams,on the theory that tokens tend to repeat themselvesover longer distances. However, this does not seem tobe true for DA sequences in our corpus, as the cachemodel showed no improvement over the standard N-gram.Second, we built a discourse grammar that in-corporated constraints on DA sequences in a non-hierarchical way, using maximum entropy (ME) esti-mation (Rosenfeld 1996). The model was designedso that the current DA label was constrained by fea-tures such as unigram statistics, the previous DA andthe DA once removed, DAs occurring within a win-dow in the past, and whether the previous utterancewas by the same speaker. We found, however, that anME model using N-gram constraints performed onlyslightly better than a corresponding backo� N-gram,and that adding the additional constraints did not im-prove relative to the trigram model. We conclude thatDA sequences are mostly characterized by local inter-actions, and thus modeled well by low-order N-gramstatistics.Dialog Act Detection Using WordsDA classi�cation using words is based on the ob-servation that di�erent DAs use distinctive wordstrings. For example, 92.4% of the \uh huh"-s occur inBackchannels, and 88.4% of the trigrams \<start>do you" occur in Yes-No-Questions.Detection from true wordsAssuming that the true (hand-transcribed) words ofutterances are given as evidence, we can computeword-based likelihoods P (W jU ) in a straightforwardway, by computing a statistical language model foreach of the 42 DAs. All DAs of a particular typefound in the training corpus were pooled and a DA-speci�c trigram model was built using standard tech-niques (Katz-backo� with Witten-Bell discounting).Detection from recognized wordsFor fully automatic DA detection, the above approachis only a partial solution, since we are not yet ableto recognize words in spontaneous speech with perfectaccuracy. We modify the likelihood approach to workwith the acoustic information A (waveforms) availableto a speech recognizer. We compute P (AjU ) by de-composing it into an acoustic likelihood P (AjW ) anda word-based likelihood P (W jU ), and summing over



Table 4: DA detection accuracies (in %) from tran-scribed and recognized words (chance = 35%).Discourse Grammar True RecognizedNone 54.3 42.8Unigram 68.1 61.9Bigram 70.6 64.6Trigram 71.9 64.9all word sequences:P (AjU ) = XW P (AjW;U )P (W jU )= XW P (AjW )P (W jU )The second line is justi�ed under the assumptionthat the recognizer acoustics (typically, cepstral coef-�cients) are invariant to DA type once the words are�xed.1The acoustic likelihoods P (AjW ) correspond to theacoustic scores the recognizer outputs for every hy-pothesized word sequence W . The summation overall W must be approximated; we did so by summingover the 2500 best hypotheses.ResultsTable 4 shows DA detection accuracies obtained bycombining the word- and recognizer-based likelihoodswith the N-gram discourse grammars described earlier.The best accuracy obtained from transcribed words,72%, is encouraging given a comparable human per-formance of 84%. We observe about a 7% absolutereduction when using recognizer words; this is remark-able considering that the speech recognizer used had aword error rate of 41% on the test set.Dialog Act Detection Using ProsodyWe also investigated prosodic information, i.e., infor-mation independent of the words as well as the stan-dard recognizer acoustics. Prosody is important forDA recognition for two reasons. One the one hand,as we saw earlier, word-based detection su�ers fromrecognition errors. Second, some utterances are in-herently ambiguous based on words alone. For ex-ample, some Yes-No-Questions have identical wordsequences as Statements, but can often be distin-guished by their �nal F0 rise.Prosodic featuresProsodic DA classi�cation was based on a large setof features computed automatically from the wave-form, without reference to word or phone information.1This is another approximation in our modeling. Forexample, a word pronunciation may change as a result ofdi�erent emphasis placed on a word.
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ected bythe SNR measure) than do backchannels.The HMM framework requires that we computeprosodic likelihoods of the form P (FijUi) for each ut-terance Ui and associated prosodic feature values Fi.We have the apparent di�culty that decision trees give



Table 5: DA detection using prosody (chance = 35%).Discourse Grammar Accuracy (%)None 38.9Unigram 48.3Bigram 50.2estimates for the posterior probabilities, P (UijFi). Theproblem can be overcome by applying Bayes' Rule lo-cally: P (FijUi) = P (Fi)P (UijFi)P (Ui) / P (UijFi)P (Ui)A quantity proportional to the required likelihood cantherefore be obtained by either dividing the posteriortree probability by the prior P (Ui), or by training thetree on a uniform prior distribution of DA types. Wechose the second approach, downsampling our trainingdata to equate DA proportions.ResultsAs a preliminary experiment to test the integrationof prosody with other knowledge sources, we traineda single tree to discriminate among the �ve most fre-quent dialog acts (Statement, Backchannel, Opinion,Agreement, and Abandoned, totaling 78% of the data)and an \Other" category. The probability in the \Oth-er" category was split uniformly among all the types inthat category. Results for this \Top-5" tree are shownin Table 5. As shown, the tree performs signi�cantlybetter than chance, but not as well as the word-basedmethods (see Table 4).Neural network classi�ersAlthough we chose to use decision trees as prosodicclassi�ers for their relative ease of inspection, we mighthave used any suitable probabilistic classi�er, i.e., anymodel that estimates the posterior probabilities of DAsgiven the prosodic features. We conducted preliminaryexperiments to assess how neural networks compare todecision trees for the type of data studied here. Neuralnetworks are worth investigating since they o�er po-tential advantages over decision trees. They can learndecision surfaces that lie at an angle to the axes of theinput feature space, unlike standard CART trees whichalways split continuous features on one dimension at atime. The response function of neural networks is con-tinuous (smooth) at the decision boundaries, allowingthem to avoid hard decisions and the complete frag-mentation of data associated with decision tree ques-tions. Most important, neural networks with hiddenunits can learn new features that combine multiple in-put features. Results from preliminary experimentson the Top-5 classi�cation task showed that a softmaxnetwork (Bridle 1990) without hidden units resulted in

a slight improvement over a decision tree on the sametask. The fact that hidden units did not a�ord an ad-vantage here indicates that complex combinations offeatures (as far as the network could learn them) donot better predict DAs for the task than linear com-binations of our input features. This further justi�esour choice of decision trees for this task, although weshould not discount other approaches in future studies.Using Multiple Knowledge SourcesAs mentioned earlier, we expect improved performancefrom combining word and prosodic information. Com-bining these knowledge sources requires estimating acombined likelihood P (Ai; FijUi) for each utterance.The simplest approach is to assume that the twotypes of acoustic observations (recognizer acousticsand prosodic features) are approximately conditionallyindependent once Ui is given:P (Ai; FijUi) = P (AijUi)P (FijAi; Ui)� P (AijUi)P (FijUi)Since the recognizer acoustics are modeled by way oftheir dependence on words, it is particularly importantto avoid using prosodic features that are directly cor-related with word-identities, or features that are alsomodeled by the discourse grammars, such as utteranceposition relative to turn changes.ResultsFor the one experiment we conducted using this ap-proach, we combined the acoustic N-best likelihoodsfrom our experiment with recognized words with theTop-5 tree classi�er mentioned earlier. Results aresummarized in Table 6.Table 6: Combined utterance detection accuracies(chance = 35%).Discourse Accuracy (%)Grammar Prosody Recognizer CombinedNone 38.9 42.8 56.5Unigram 48.3 61.9 62.6Bigram 50.2 64.6 65.0As shown, the combined classi�er presents a slightimprovement over the recognizer-based classi�er. Theexperiment without discourse grammar indicates thatthe combined evidence is considerably stronger thaneither knowledge source alone, yet this improvementseems to be made largely redundant by the use of priorsand the discourse grammar. For example, the ambigu-ity between Yes-No-Questions and statements whereprosody is expected to help can also be removed byexamining the context of the utterance (e.g., noticingthat the following utterance is a yes/no answer).



Table 7: Accuracy (in %) for individual and combinedmodels for three subtasks, using uniform priors (chance= 50%). Knowledge True Recog.Source words wordsQuestions/Statementsprosody only 75.97 75.97words only 85.85 75.43words+prosody 87.58 79.76Agreements/Backchannelsprosody only 72.88 72.88words only 80.99 78.22words+prosody 84.74 81.70Focussed classi�cationsTo gain a better understanding of the potential forprosodic DA detection independent of the e�ects ofdiscourse grammar and the skewed DA distribution inSwitchboard, we also examined several binary DA clas-si�cation tasks. The choice of tasks was motivated byan analysis of confusions committed by a purely word-based DA detector, which tends to mistake Questionsfor Statements, and Backchannels for Agreements (andvice versa). We tested a prosodic classi�er, and word-based classi�er (with both transcribed and recognizedwords), and a combined classi�er on these three tasks,downsampling the DA distribution to equate the classsizes in each case. Chance performance in all three ex-periments is therefore 50%. Results are summarized inTable 7.As shown, the combined classi�er was consistentlymore accurate than the classi�er using words alone.Although the gain in accuracy was not statistically sig-ni�cant for the small recognizer test set because of alack of power, replication for a larger test set showedthe gain to be highly signi�cant for both subtasks by aSign test, p < :001 and p < :0001, respectively. Acrossthese as well as additional subtasks, the relative ad-vantage adding prosody was larger for recognized thanfor true words, suggesting that prosody is particularlyhelpful when word information is not perfect.Feature UsageFeature analyses, conducted by systematically leavingout feature types and rebuilding trees, revealed thatalthough canonical features (such as F0 for questiondetection) were important, other less obvious features(e.g., duration and speaking rate for the same task)were also heavily used. Gender features were not used,suggesting that feature normalizations (especially F0)were appropriate, and that gender-independent model-ing is feasible for these tasks. Overall, there was a highdegree of correlation among features such that if cer-tain features were removed, others could compensateto retain accuracy. Nevertheless, the features allowing

best classi�cation were dependent on the subtask, sug-gesting that a prosodic classi�er should use as manydi�erent feature types as possible for optimal coverageacross tasks. ConclusionsWe have developed an integrated probabilistic ap-proach to dialog act classi�cation on a large sponta-neous speech corpus. The approach combines modelsfor lexical and prosodic realizations of DAs, as well asa statistical discourse grammar. All components of themodel are automatically trained, and are thus applica-ble to other domains for which labeled data is available.Detection accuracies achieved so far are highly encour-aging, relative to the inherent di�culty of the task asmeasured by human labeler performance. We investi-gated several modeling alternatives for the componentsof the model (backo� N-grams and maximum entropymodels for discourse grammars, decision trees and neu-ral networks for prosodic classi�cation). We found per-formance largely independent of these choices, indicat-ing on the one hand that our current system does aboutas well as possible given current modeling techniquesand the inherent di�culty of the task and our limitedrepresentation of it. On the other hand, to improveperformance we will have to revisit our independenceassumptions, as well as examine additional knowledgesources. Future WorkFor discourse and dialogmodeling, we plan to try alter-native approaches to encode the temporal sequencingof utterances. For example, we are currently not mod-eling the fact that utterances by the two speakers mayactually overlap (e.g., backchannels interrupt an on-going utterance). In addition, we should model moreof the non-local aspects of discourse structure, despiteour negative results so far. For example, a context-freediscourse grammar could potentially account for thenested structures proposed in Grosz & Sidner (1986).Word-based DA discrimination has obvious parallelsto topic spotting and message classi�cation, and weshould explore techniques developed in that paradigm,such as keyword-based detectors (Rose, Chang, &Lippmann 1991). For prosodic DA detection, we arestudying the use of multiple trees, both to cascadeclassi�ers trained on subtasks, and to combine parallelclassi�ers using a disjoint subset of features, which webelieve will increase robustness.The integration of knowledge sources is especiallypromising, since we are currently making fairly se-vere independence assumptions here. Therefore oureventual goal would be a DA classi�er that directlyintegrates discourse grammar, word information, andprosody. For example, it should be feasible to train aprosodic decision tree that takes the discourse contextas one of its inputs. Such a model would subsume thediscourse grammar, and is potentially able to capture
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