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Abstract

We describe an integrated approach for statistical
modeling of discourse structure for natural conversa-
tional speech. Our model is based on 42 ‘dialog acts’
(e.g., Statement, Question, Backchannel, Agreement,
Disagreement, Apology), which were hand-labeled in
1155 conversations from the Switchboard corpus of
spontaneous human-to-human telephone speech. We
developed several models and algorithms to automati-
cally detect dialog acts from transcribed or automati-
cally recognized words and from prosodic properties of
the speech signal, and by using a statistical discourse
grammar. All of these components were probabilistic
in nature and estimated from data, employing a vari-
ety of techniques (hidden Markov models, N-gram lan-
guage models, maximum entropy estimation, decision
tree classifiers, and neural networks). In preliminary
studies, we achieved a dialog act labeling accuracy of
65% based on recognized words and prosody, and an
accuracy of 72% based on word transcripts. Since hu-
mans achieve 84% on this task (with chance perfor-
mance at 35%) we find these results encouraging.

Introduction

The ability to model and automatically detect dis-
course structure 1s essential as we address problems
such as understanding spontaneous dialog (a meeting
summarizer needs to know who said what to whom),
building human-computer dialog systems (a conversa-
tional agent needs to know whether it just got asked
a question or ordered to do something), and simple
transcription of conversational speech (utterances with
different discourse function also have very different
words). This paper describes an effort to automate
the annotation of natural dialog at the level of dia-
log acts (DAs), a shallow first level of analysis that is
essential to the tasks mentioned. Table 1 shows a sam-
ple of the kind of discourse structure we are modeling
and detecting. FEach utterance is categorized into one
of several utterance types according to syntactic and
pragmatic criteria.

Our approach was to build statistical models for var-
ious aspects of dialog acts, such as their lexical re-
alizations, prosodic characteristics, and sequence dis-

tribution, and to integrate these into a probabilistic
DA detector. There are many excellent previous at-
tempts to build predictive, stochastic models of dia-
log structure (Kita et al. 1996; Mast et al. 1996;
Nagata & Morimoto 1994; Reithinger et al. 1996;
Suhm & Waibel 1994; Taylor et al. 1997; Woszczyna
& Waibel 1994; Yamaoka & Tida 1991), and our effort
is in many ways inspired by this work. Our project
extends this earlier work, particularly in its scale; our
models were trained on an order of magnitude more
data than any previous system. In addition, whereas
previous work has largely dealt with constrained, task-
oriented dialog, our focus is on unconstrained, sponta-
neous conversation. Finally, we believe our approach
to model integration, in particular our use of automat-
ically recognized words, to be novel. A more complete
account of this work can be found in Jurafsky et al.

(1997).

The Dialog Act Labeling Task

The data consisted of a substantial portion of the wave-
forms and corresponding transcripts from the Switch-
board corpus of conversational telephone speech (God-
frey, Holliman, & McDaniel 1992) distributed by the
Linguistic Data Consortium (LDC). The raw Switch-
board data is not segmented in a linguistically consis-
tent way; we therefore made use of a version that had
been hand-segmented at the utterance level (Meteer &
others 1995). Automatic segmentation of spontaneous
speech is an open research problem in its own right
(Mast et al. 1996; Stolcke & Shriberg 1996), but we
decided not to confound the DA detection task with
the additional problems introduced by automatic seg-
mentation.

We chose to follow a recent standard for shallow dis-
course structure annotation, the Dialog Act Markup in
Several Layers (DAMSL) tag set, which was recently
designed by the natural-language processing commu-
nity (Core & Allen 1997). We began with this markup
system and modified 1t in several ways to make it more
useful for our corpus. The tag set distinguishes 42
mutually exclusive utterance types; Table 2 shows the
10 most frequent categories with examples and rela-
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Table 1: A fragment of a labeled switchboard conversation.

[ Spkr Dialog Act Utterance
A Wh-Question What kind do you have now?
B Statement Uh, we have a, a Mazda nine twenty nine and a Ford
Crown Victoria and a little two seater CRX.
A Acknowledge-Answer  Oh, okay.
B Opinion Uh, it’s rather difficult to, to project what kind of, uh, -
A Statement we’d, look, always look into, uh, consumer reports to see what kind
of, uh, report, or, uh, repair records that the various cars have —
B Turn-Exit So, uh, -
A Yes-No-Quest And did you find that you like the foreign cars better than the domestic?
B Answer-Yes Uh, yeah,
B Statement We’ve been extremely pleased with our Mazdas.
A Backchannel-Quest Oh, really?
B Answer-Yes Yeah.

tive frequencies. A detailed description of the labeling
system can be found in Jurafsky, Shriberg, & Biasca
(1997).

Note that our tag set incorporates both tradi-
tional sociolinguistic and discourse-theoretic rhetorical
relations/adjacency-pairs as well as some more-form-
based labels. Furthermore, the tag set is structured
so as to allow labelers to annotate a Switchboard con-
versation in about 30 minutes, and without having to
listen to each utterance. Without these constraints the
tag set might have included some finer distinctions, but
we felt that this drawback was balanced by the ability
to cover a large amount of data.

Labeling was carried out in a three-month period
by eight linguistics graduate students at CU Boulder.
Inter-labeler agreement was 84%, resulting in a Kappa
statistic of 0.80. The Kappa statistic measures agree-
ment normalized for chance; values of 0.8 or higher are
considered considered high reliability (Carletta 1996).

A total of 1155 Switchboard conversations were la-
beled, comprising 205,000 utterances and 1.4 million
words. The data was partitioned into a training set
of 1115 conversations (1.4M words, 198K utterances),
used for estimating the various components of our
model, and a test set of 19 conversations (29K words,
4K utterances). Remaining conversations were set
aside as future test sets.

Hidden Markov Modeling of Dialog

Our goal is to perform DA classification using a proba-
bilistic framework, giving us a principled approach for
combining multiple knowledge sources (using the laws
of probability), as well as the ability to derive model
parameters automatically from a corpus, using statis-
tical inference techniques.

Given all available evidence F about a conversation,
the goal is to find the DA sequence U that has the high-
est posterior probability P(U|E) given that evidence.
Applying Bayes’ Rule we get

U* = argmaxP(U|E)
U

_ PU)P(EIU)
= argénaxw
= argénaXP(U)P(EW) (1)

Here P(U) represents the prior probability of a DA se-
quence, and P(E|U) is the likelihood of U given the ev-
idence. The likelihood 1s usually much more straight-
forward to model than the posterior itself. This has
to do with the fact that our models are generative or
causal in nature, i.e., they describe how the evidence
is produced by the underlying DA sequence U'.

Estimating P(U) requires building a probabilistic
discourse grammar, i.e.; a statistical model of DA se-
quences. We did so using familiar techniques from lan-
guage modeling for speech recognition, although the
sequenced objects in this case are DA labels rather
than words.

Dialog act likelihoods

The computation of likelihoods P(E|U) depends on
the types of evidence used. In our experiments we
used the following sources of evidence, either alone or
in combination:

Transcribed words: The likelihoods used in Eq. 1
are P(W|U), where W refers to the true (hand-

transcribed) words spoken in a conversation.

Recognized words: The evidence consists of recog-
nizer acoustics A, and we seek to compute P(A|U).
As described later, this involves considering multiple
alternative recognized word sequences.

Prosodic features: Evidence is given by the acoustic
features F' capturing various aspects of pitch, dura-
tion, energy, etc., of the speech signal; the associated

likelihoods are P(F|U).

To make both the modeling and the search for the
best DA sequence feasible, we further require that our
likelihood models are decomposable by utterance. This
means that the likelihood given a complete conversa-
tion can be factored into likelihoods given the individ-



Table 2: The 10 most frequent (out of 42) dialog act labels.

[ Tag [ Abbrev | Example %
Statement-non-opinion sd Me, I'm in the legal department. 36%
Acknowledge (Backchannel) b Uh-huh. 19%
Statement-opinion sV I think it’s great 13%
Agree/Accept aa That’s exactly it. 5%
Abandoned or Turn-Exit % So, -/ 5%
Appreciation ba I can imagine. 2%
Yes-No-Question qy Do you have to have any special training? 2%
Non-verbal X < Laughter> ,< Throat_clearing> 2%
Yes answers ny Yes. 1%
Conventional-closing fc Well, it’s been nice talking to you. 1%

ual utterances. We use U; for the ith DA label in the
sequence U, ie., U = (Uy,...,U;, ..., Up), where n is
the number of utterances in a conversation. In addi-
tion, we use F; for that portion of the evidence that
corresponds to the ¢th utterance, e.g., the words or the
prosody of the ith utterance. Decomposability of the
likelihood means that

P(E|U) = P(EL|UL) - ... P(E,|Uy)

Applied to the three types of evidence introduced
earlier, 1t is clear that this assumption is not strictly
true. For example, speakers might tend to reuse words
found earlier in the conversation, violating the inde-
pendence of the P(W;|U;). Similarly, speakers might
adjust their pitch or volume over time, e.g., to the con-
versation partner, violating the independence of the
P(F;|U;). As in other areas of statistical modeling, we
count on the fact that these violations are small com-
pared to the properties actually modeled, namely, the
dependence of E; on Uj.

Markov modeling

Returning to the prior of DA sequences P(U), it is
convenient to make certain independence assumptions
here, too. In particular, we assume that the prior dis-
tribution of U is Markovian, i.e., that each U; depends
only on a fixed number k of preceding DA labels:

PU|Uy, ..., Ui—1) = P(Ui|Ui—py .. ., UiZ1)

(k is the order of the Markov process describing U).
The N-gram based discourse grammars we used have
this property. As described later, k = 1 is a very good
choice, i.e., conditioning on the DA types more than
one removed from the current one does not improve
the quality of the model by much.

The importance of the Markov assumption for the
discourse grammar 1s that we can now view the whole
system of discourse grammar and local utterance-
based likelihoods as a kth-order hidden Markov model
(HMM) (Rabiner & Juang 1986). The HMM states
correspond to DAs, observations correspond to utter-
ances, transition probabilities are given by the dis-
course grammar, and observation probabilities are

given by the local likelihoods P(E;|U;). This allows
us to use efficient dynamic programming algorithms to
compute the relevant aspects of the model, such as

e the most probable DA sequence (the Viterbi algo-
rithm)

e the posterior probability of various DAs for a given
utterance, after considering all the evidence (the
forward-backward algorithm)

Dialog act decoding

The Viterbi algorithm for HMMs finds the globally
most probable state sequence. When applied to a
discourse model with locally decomposable likelihoods
and Markovian discourse grammar, 1t will therefore
find precisely the DA sequence with the highest poste-
rior probability:

U* = argmax P(U|FE)
U

The combination of likelihood and prior modeling,
HMMs, and Viterbi decoding is fundamentally the
same as the standard probabilistic approaches to
speech recognition (Bahl, Jelinek, & Mercer 1983) and
tagging (Church 1988). Tt maximizes the probability
of getting the entire DA sequence correct, but it does
not necessarily find the DA sequence that has the most
DA labels correct (Stolcke, Konig, & Weintraub 1997).
To minimize the overall utterance labeling error, we
need to maximize the probability of getting each DA
label correct individually, i.e., we need to maximize
P(U;|E) for each i = 1,...,n. We can compute the
per-utterance posterior DA probabilities by summing:

P(ulE)= Y P(U|E)

U,=u

where the summation is over all sequences U whose ith
element matches the label in question. The summation
is efficiently carried out by the forward-backward algo-
rithm for HMMs.

For Oth-order (unigram) discourse grammars,
Viterbi decoding and forward/backward decoding al-
ways yield the same results. However, for higher-order
discourse grammars we found that forward-backward



Table 3: Perplexities of dialog acts with and without
turn information.

| Discourse grammar | P(U) | P(U,T) | P(U|T) |

None 42 84 42
Unigram 11.0 18.5 9.0
Bigram 7.9 10.4 5.1
Trigram 7.5 9.8 4.8

decoding consistently gives slightly (up to 1% absolute)
better accuracies, as expected. Therefore, we used this
method throughout.

Discourse Grammars

The statistical discourse grammar models the prior
probabilities P(U) of DA sequences. In the case of
conversations for which the identities of the speakers
are known (as in Switchboard), the discourse grammar
should also model turn-taking behavior. A straightfor-
ward approach is to model sequences of pairs (U;, T3)
where U; is the DA label and 7; represents the speaker.
We are not trying to model speaker idiosyncrasies, so
conversants are arbitrarily identified as A or B, and the
model 18 made symmetric with respect to the choice of
sides (e.g., by replicating the training sequences with
sides switched). Our discourse grammars thus had a
vocabulary of 42 x 2 = 84 labels, plus tags for the
beginning and end of conversations.

N-gram discourse models

A computationally convenient type of discourse gram-
mar 1s an N-gram model based on DA tags, as it allows
efficient decoding in the HMM framework. We trained
standard backoff N-gram models (Katz 1987), using
the frequency smoothing approach of Witten & Bell
(1991). Models of various orders were compared by
their perplexities, i.e., the average number of choices
the model predicts for each tag, conditioned on the
preceding tags.

Table 3 shows perplexities for three types of mod-
els:  P(U), the DAs alone; P(U,T), the combined
DA /speaker ID sequence; and P(U|T), the DAs con-
ditioned on known speaker IDs (appropriate for the
Switchboard task). As expected, we see an improve-
ment (decreasing perplexities) for increasing N-gram
order. However, the incremental gain of a trigram is
small, and higher-order models did not prove useful.
Comparing P(U) and P(U|T), we see that speaker
identity adds substantial information, especially for
higher-order models.

Other discourse models

We also investigated non-N-gram discourse models,
based on various language modeling techniques known
from speech recognition. One motivation for alterna-
tive models is that N-grams enforce a one-dimensional

representation on DA sequences, whereas we saw above
that the event space is really a multidimensional event
(DA label and speaker labels). Another motivation is
that N-grams fail to model long-distance dependencies,
such as the fact that speakers may tend to repeat cer-
tain DAs or patterns throughout the conversation.

The first alternative approach was a standard cache
model (Kuhn & de Mori 1990), which boosts the prob-
abilities of previously observed unigrams and bigrams,
on the theory that tokens tend to repeat themselves
over longer distances. However, this does not seem to
be true for DA sequences in our corpus, as the cache
model showed no improvement over the standard N-
gram.

Second, we built a discourse grammar that in-
corporated constraints on DA sequences in a non-
hierarchical way, using mazimum entropy (ME) esti-
mation (Rosenfeld 1996). The model was designed
so that the current DA label was constrained by fea-
tures such as unigram statistics, the previous DA and
the DA once removed, DAs occurring within a win-
dow in the past, and whether the previous utterance
was by the same speaker. We found, however, that an
ME model using N-gram constraints performed only
slightly better than a corresponding backoff N-gram,
and that adding the additional constraints did not im-
prove relative to the trigram model. We conclude that
DA sequences are mostly characterized by local inter-
actions, and thus modeled well by low-order N-gram
statistics.

Dialog Act Detection Using Words

DA classification using words is based on the ob-
servation that different DAs wuse distinctive word
strings. For example, 92.4% of the “uh_huh”-s occur in
Backchannels, and 88.4% of the trigrams “<start>
do you” occur in Yes-No-Questions.

Detection from true words

Assuming that the true (hand-transcribed) words of
utterances are given as evidence, we can compute
word-based likelihoods P(W|U) in a straightforward
way, by computing a statistical language model for
each of the 42 DAs. All DAs of a particular type
found in the training corpus were pooled and a DA-
specific trigram model was built using standard tech-
niques (Katz-backoff with Witten-Bell discounting).

Detection from recognized words

For fully automatic DA detection, the above approach
is only a partial solution, since we are not yet able
to recognize words in spontaneous speech with perfect
accuracy. We modify the likelihood approach to work
with the acoustic information A (waveforms) available
to a speech recognizer. We compute P(A|U) by de-
composing it into an acoustic likelihood P(A|W) and
a word-based likelihood P(W|U), and summing over



Table 4: DA detection accuracies (in %) from tran-
scribed and recognized words (chance = 35%).
| Discourse Grammar | True | Recognized ]

cont_speech_frames n < 23.403

B
0.693 0.307

cont_speech_frames n >= 23.403

None 54.3 42.8
Unigram 68 . 1 6 1 . 9 ling_dur < 0.485 ling_dur >= 0.485 ling_dur < 0.415 ling_dur >=0.415
Trigram 71.9 64.9 : : : :

ling_dur_minus_min10pause < 0.565 ling_dur_minus_min10pause >= 0.565 sr_mean_utt < 0.4774 snr_mean_utt >= 0.4774

A
0.397 0.603

snr_mean_utt >= 0.3717

all word sequences:

snr_mean_utt < 0.3717

P(AIU) = Y PAIW,U)P(W|U)
= Y PAW)P(W|U)

The second line is justified under the assumption
that the recognizer acoustics (typically, cepstral coef-
ficients) are invariant to DA type once the words are
fixed.!

The acoustic likelihoods P(A|WW) correspond to the
acoustic scores the recognizer outputs for every hy-
pothesized word sequence W. The summation over
all W must be approximated; we did so by summing
over the 2500 best hypotheses.

Results

Table 4 shows DA detection accuracies obtained by
combining the word- and recognizer-based likelihoods
with the N-gram discourse grammars described earlier.
The best accuracy obtained from transcribed words,
72%, is encouraging given a comparable human per-
formance of 84%. We observe about a 7% absolute
reduction when using recognizer words; this is remark-
able considering that the speech recognizer used had a
word error rate of 41% on the test set.

Dialog Act Detection Using Prosody

We also investigated prosodic information, i.e., infor-
mation independent of the words as well as the stan-
dard recognizer acoustics. Prosody is important for
DA recognition for two reasons. One the one hand,
as we saw earlier, word-based detection suffers from
recognition errors. Second, some utterances are in-
herently ambiguous based on words alone. For ex-
ample, some Yes-No-Questions have identical word
sequences as Statements, but can often be distin-
guished by their final FO rise.

Prosodic features

Prosodic DA classification was based on a large set
of features computed automatically from the wave-
form, without reference to word or phone information.

!This is another approximation in our modeling. For
example, a word pronunciation may change as a result of
different emphasis placed on a word.

B
0.6250.375

Figure 1: Decision tree for the classification of
Backchannels (B) and Agreements (A). Each node is
labeled with the majority class for that node, as well
as the posterior probabilities of the two classes.

The features can be broadly grouped as referring to
duration (e.g., utterance duration, with and without
pauses), pauses (e.g., total and mean of non-speech re-
gions exceeding 100 ms), pitch (e.g., mean and range
of FO over utterance, slope of FO regression line), en-
ergy (e.g., mean and range of RMS energy, same for
signal-to-noise ratio), speaking rate (based on the “en-
rate” measure of Morgan, Fosler, & Mirghafori (1997)),
and gender (of both speaker and listener). Where ap-
propriate, we included both raw features and values
normalized by utterance and/or conversation. We also
included features that are output by the prosodic event
detector of Taylor et al. (1997) (e.g., the number of
pitch accents in the utterance). A complete discussion
of the features used can be found in Shriberg et al.

(1997).

Prosodic decision trees

For our prosodic classifiers, we used CART-style deci-
sion trees (Breiman et al. 1983). Decision trees allow
combination of discrete and continuous features, and
can be inspected to gain an understanding of the role
of different features and feature combinations.

To illustrate one area in which prosody could aid
our classification task, we applied trees to distinctions
known to be ambiguous from words alone. One fre-
quent example in our corpus was the distinction be-
tween Backchannels and Agreements (see Table 2),
which share terms such as “Right” and “Yeah.” As
shown in Figure 1, a prosodic tree trained on this
distinction revealed that agreements have consistently
longer durations and greater energy (as reflected by
the SNR measure) than do backchannels.

The HMM framework requires that we compute
prosodic likelihoods of the form P(F;|U;) for each ut-
terance U; and associated prosodic feature values F;.
We have the apparent difficulty that decision trees give



Table 5: DA detection using prosody (chance = 35%).

| Discourse Grammar  Accuracy (%) |

None 38.9
Unigram 48.3
Bigram 50.2

estimates for the posterior probabilities, P(U;|F;). The
problem can be overcome by applying Bayes’ Rule lo-
cally:

PUi\F)  P(Ui|Fy)

A quantity proportional to the required likelihood can
therefore be obtained by either dividing the posterior
tree probability by the prior P(U;), or by training the
tree on a uniform prior distribution of DA types. We
chose the second approach, downsampling our training
data to equate DA proportions.

Results

As a preliminary experiment to test the integration
of prosody with other knowledge sources, we trained
a single tree to discriminate among the five most fre-
quent dialog acts (Statement, Backchannel, Opinion,
Agreement, and Abandoned, totaling 78% of the data)
and an “Other” category. The probability in the “Oth-
er” category was split uniformly among all the types in
that category. Results for this “Top-5” tree are shown
in Table 5. As shown, the tree performs significantly
better than chance, but not as well as the word-based
methods (see Table 4).

Neural network classifiers

Although we chose to use decision trees as prosodic
classifiers for their relative ease of inspection, we might
have used any suitable probabilistic classifier, 1.e., any
model that estimates the posterior probabilities of DAs
given the prosodic features. We conducted preliminary
experiments to assess how neural networks compare to
decision trees for the type of data studied here. Neural
networks are worth investigating since they offer po-
tential advantages over decision trees. They can learn
decision surfaces that lie at an angle to the axes of the
input feature space, unlike standard CART trees which
always split continuous features on one dimension at a
time. The response function of neural networks is con-
tinuous (smooth) at the decision boundaries, allowing
them to avoid hard decisions and the complete frag-
mentation of data associated with decision tree ques-
tions. Most important, neural networks with hidden
units can learn new features that combine multiple in-
put features. Results from preliminary experiments
on the Top-b classification task showed that a softmax
network (Bridle 1990) without hidden units resulted in

a slight improvement over a decision tree on the same
task. The fact that hidden units did not afford an ad-
vantage here indicates that complex combinations of
features (as far as the network could learn them) do
not better predict DAs for the task than linear com-
binations of our input features. This further justifies
our choice of decision trees for this task, although we
should not discount other approaches in future studies.

Using Multiple Knowledge Sources

As mentioned earlier, we expect improved performance
from combining word and prosodic information. Com-
bining these knowledge sources requires estimating a
combined likelihood P(A;, F;|U;) for each utterance.
The simplest approach is to assume that the two
types of acoustic observations (recognizer acoustics
and prosodic features) are approximately conditionally
independent once U; is given:

P(A;, Fi|Ui) = P(A|Ui)P(Fi| A, Us)
~ P(AZ'|UZ')P(FZ'|UZ')

Since the recognizer acoustics are modeled by way of
their dependence on words, it is particularly important
to avoid using prosodic features that are directly cor-
related with word-identities, or features that are also
modeled by the discourse grammars, such as utterance
position relative to turn changes.

Results

For the one experiment we conducted using this ap-
proach, we combined the acoustic N-best likelihoods
from our experiment with recognized words with the
Top-b tree classifier mentioned earlier. Results are
summarized in Table 6.

Table 6: Combined utterance detection accuracies

(chance = 35%).

Discourse Accuracy (%)

Grammar | Prosody Recognizer Combined
None 38.9 42.8 56.5
Unigram 48.3 61.9 62.6
Bigram 50.2 64.6 65.0

As shown, the combined classifier presents a slight
improvement over the recognizer-based classifier. The
experiment without discourse grammar indicates that
the combined evidence is considerably stronger than
either knowledge source alone, yet this improvement
seems to be made largely redundant by the use of priors
and the discourse grammar. For example, the ambigu-
ity between Yes-No-Questions and statements where
prosody is expected to help can also be removed by
examining the context of the utterance (e.g., noticing
that the following utterance is a yes/no answer).



Table 7: Accuracy (in %) for individual and combined
models for three subtasks, using uniform priors (chance

= 50%).

Knowledge True | Recog.
Source words | words

Questions/Statements
prosody only | 75.97 | 75.97

words only | 85.85 | 75.43
words+prosody | 87.58 | 79.76
Agreements/Backchannels
prosody only | 72.88 | 72.88

words only | 80.99 | 78.22
words+prosody | 84.74 | 81.70

Focussed classifications

To gain a better understanding of the potential for
prosodic DA detection independent of the effects of
discourse grammar and the skewed DA distribution in
Switchboard, we also examined several binary DA clas-
sification tasks. The choice of tasks was motivated by
an analysis of confusions committed by a purely word-
based DA detector, which tends to mistake Questions
for Statements, and Backchannels for Agreements (and
vice versa). We tested a prosodic classifier, and word-
based classifier (with both transcribed and recognized
words), and a combined classifier on these three tasks,
downsampling the DA distribution to equate the class
sizes in each case. Chance performance in all three ex-
periments is therefore 50%. Results are summarized in
Table 7.

As shown, the combined classifier was consistently
more accurate than the classifier using words alone.
Although the gain in accuracy was not statistically sig-
nificant for the small recognizer test set because of a
lack of power, replication for a larger test set showed
the gain to be highly significant for both subtasks by a
Sign test, p < .001 and p < .0001, respectively. Across
these as well as additional subtasks, the relative ad-
vantage adding prosody was larger for recognized than
for true words, suggesting that prosody is particularly
helpful when word information is not perfect.

Feature Usage

Feature analyses, conducted by systematically leaving
out feature types and rebuilding trees, revealed that
although canonical features (such as FO for question
detection) were important, other less obvious features
(e.g., duration and speaking rate for the same task)
were also heavily used. Gender features were not used,
suggesting that feature normalizations (especially F0)
were appropriate, and that gender-independent model-
ing is feasible for these tasks. Overall, there was a high
degree of correlation among features such that if cer-
tain features were removed, others could compensate
to retain accuracy. Nevertheless, the features allowing

best classification were dependent on the subtask, sug-
gesting that a prosodic classifier should use as many
different feature types as possible for optimal coverage
across tasks.

Conclusions

We have developed an integrated probabilistic ap-
proach to dialog act classification on a large sponta-
neous speech corpus. The approach combines models
for lexical and prosodic realizations of DAs, as well as
a statistical discourse grammar. All components of the
model are automatically trained, and are thus applica-
ble to other domains for which labeled data is available.
Detection accuracies achieved so far are highly encour-
aging, relative to the inherent difficulty of the task as
measured by human labeler performance. We investi-
gated several modeling alternatives for the components
of the model (backoff N-grams and maximum entropy
models for discourse grammars, decision trees and neu-
ral networks for prosodic classification). We found per-
formance largely independent of these choices, indicat-
ing on the one hand that our current system does about
as well as possible given current modeling techniques
and the inherent difficulty of the task and our limited
representation of it. On the other hand, to improve
performance we will have to revisit our independence
assumptions, as well as examine additional knowledge
sources.

Future Work

For discourse and dialog modeling, we plan to try alter-
native approaches to encode the temporal sequencing
of utterances. For example, we are currently not mod-
eling the fact that utterances by the two speakers may
actually overlap (e.g., backchannels interrupt an on-
going utterance). In addition, we should model more
of the non-local aspects of discourse structure, despite
our negative results so far. For example, a context-free
discourse grammar could potentially account for the
nested structures proposed in Grosz & Sidner (1986).

Word-based DA discrimination has obvious parallels
to topic spotting and message classification, and we
should explore techniques developed in that paradigm,
such as keyword-based detectors (Rose, Chang, &
Lippmann 1991). For prosodic DA detection, we are
studying the use of multiple trees, both to cascade
classifiers trained on subtasks, and to combine parallel
classifiers using a disjoint subset of features, which we
believe will increase robustness.

The integration of knowledge sources is especially
promising, since we are currently making fairly se-
vere independence assumptions here. Therefore our
eventual goal would be a DA classifier that directly
integrates discourse grammar, word information, and
prosody. For example, it should be feasible to train a
prosodic decision tree that takes the discourse context
as one of its inputs. Such a model would subsume the
discourse grammar, and 1s potentially able to capture



interactions between the context and prosody of the
current utterance, which are currently assumed inde-
pendent (given the current DA). A further idea along
these lines is to make word knowledge directly avail-
able to a posterior probability estimator, allowing it to
model correlations of words and prosody.
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