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ABSTRACT (N-gram) frequencies [5]. These stylistic models are by def
jpition more robust to channel mismatch and environmental
noise, and, if based on sufficiently accurate speech recogni
tion, can be expected to perform better under those condi-
tions. Even under clean acoustic conditions, stylistic el®d
can capture information that is complementary to shortiter

We propose a method to improve speaker recognitio
lexical model performance using acoustic-prosodic inrm
tion. More specifically, the lexical model is trained using
duration- and pronunciation-conditioned word N-grams, si
multaneously modeling lexical information along with thei
acoustic and prosodic characteristics. Support vector mépectral_features. )
chines are used for modeling and scoring, with N-gram fre- __ Prewqus work on hlgher-le\_/el_ features for speaker recog-
guency vectors serving as features. Experimental ressits un!t|on typically focused on building separate models using
ing NIST Speaker Recognition Evaluation data sets show th&'ﬁ_erent types of featl_Jres, folloyved by score-level comt_)l
this method outperforms the regular word N-gram-based lexination. For example, in our ear_ller work we employed dif-
cal models. Furthermore, our approach gives additionatinf ferent mo‘?'e's for aCOU_St'C' lexical, and prosodic features
mation when combined with a high-accuracy acoustic speaké’}nOI combined them using a neural network [4]. An alter-

model. We believe that this is a promising step toward in_native approach is to use complementary features in a sin-

tegrated speaker recognition models that combine multiplgIe speaker model, assuming that cla_ssmer training can find
types of high-level features. the best way to combine them. In this paper, we focus on

- ~ the lexical N-gram model and investigate ways to integrate
Index Terms— speaker verification, speaker recognition,it with certain kinds of acoustic and prosodic information.

lexical modeling, SVM. More specifically, the lexical model is applied to duration-
and pronunciation-conditioned word N-grams. We see this as
1. INTRODUCTION a first step toward building more integrated speaker reecogni
tion models.

Speaker verification systems aim to automatically detect Earlier work is summarized in Section 2. In sections 3
whether the person who is speaking matches the given nana@d 4, we describe duration- and pronunciation-conditione
on the basis of individual information included in speechN-gram models, respectively. Section 5 presents expetsnen
waveforms. Speaker verification is widely used for forensicand results.
purposes and to control access to services such as voice di-
aling [1]. Speaker recognition and verification systemsehav
been traditionally based on acoustic features, such agrakps
features, typically modeled using Gaussian Mixture Model
(GMMSs) [2], and these systems have been evaluated usi
only very short segments of speech. While such features a &
proven to be extremely useful, acoustic models are known
be sensitive to channel mismatch and environmental noise.
Recently, higher-level stylistic features have becomeamor
popular as official evaluations have started to include éong
test conversations and higher-level features have beamsho
to improve performance when combined with acoustic fea.
tures [3]. Among the higher-level features investigates ar A G
K ) i Zlog Speaker])'
prosodic features, such as pitch, duration, and energy char j ABackground(J)
acteristics [4], and lexical features, such as word andgghra Z]' 1

2. PREVIOUS WORK

Early work on using lexical information in speaker recogni-
Yion is described in [6], but did not produce significant gain
esumably due to the short training and test durations used
the time. In 2001, Doddington proposed using a model
Rith only word unigrams or bigrams [5] and showed it to give
promising results when applied to full conversations. The
model was based on a conventional log-likelihood test, in
which the log of the ratio of speaker and background model
likelihoods is averaged for all N-grams in an utterance, in-
dexed byj:




It was shown that performance improved steadily as thearlier work, our approach is to treat the N-gram frequencie
amount of training data per speaker increases, and usigg ondf each conversation side as a feature vector that is clkxbsifi
a small subset of N-grams resulted in performance similar tby a speaker-specific SVM. Word durations are binned and
that of using all N-grams. different bins are counted separately.

Following this study, other researchers focused on com- The duration-conditioned word N-gram SVM system is
bining the lexical model with existing acoustic models, asconstructed as follows: All instances of the most frequent
well as improving the model. Andrevet al. applied the N- 5000 word types (as optimized on a development set) are
gram frequency modeling framework to phone N-grams obbinned into two categories, “slow” and “fast”, with respect
tained from a phone recognizer [7]. Since the phone recoge their duration. Durations are measured according to the
nizer is unconstrained such an approach captures disaletizacoustic alignments of the speech recognizer (ASR) output,
acoustic properties, as well as idiosyncratic pronunmiegti  and are therefore subject to ASR errors, just like the word
A combination of both lexical and phonetic models with alabels themselves. Then, each of wards labeled as ei-
conventional GMM-based cepstral system showed significaiber wgow OF we,se fOr the purpose of computing the N-gram
improvements. frequencies. Word types outside of the top 5000 are not dif-

Recently, Bakeet al.showed that the lexical and phonetic ferentiated according to their duration. with more tharséhe
N-gram frequency models can be improved by training théwo bins
speaker model via maximum a posteriori (MAP) adaptation of ~ N-grams were chosen for inclusion in the model based on
a background model [8]. They also showed the effectivenedsequency in the background training data. The background
of this approach when smaller amounts of speaker-dependest comprised 1971 conversation sides from the Fisher sprpu
data are available [9]. Switchboard-2 NIST SRE 2003 data, Switchboard-2 Phase 5

Meanwhile, Campbelkt al. proposed a way to model data. N-gram lengths up to 3 were considered. Based on
phone N-gram frequencies in the support vector machinegesults with Fisher and Switchboard-2 test data, we retiaine
(SVM) framework [10]. A similar approach for word N- all N-grams occurring at least 5 times in the background set,
grams was shown to be superior to log-likelihood ratio modfor a total of about 600,000 N-gram types.
eling and employed in SRI's 2004 NIST evaluation system The relative frequencies of the N-grams in a conversa-
[4], giving improvements in combination with acoustic andtion side form a (typically sparse) vector of feature values
prosodic speaker models. In the SVM formulation, speakefhe values are then rank-normalized to the rafigé], us-
verification is treated as a binary classification task, ahatr ing the background data as the reference distribution. The
tive frequencies of word N-grams (possibly scaled or normalSVM was trained using a linear kernel, with a bias of 500
ized) are used as features. All the N-grams appearing mo@&gainst misclassification of positive examples to compen-
than twice in the background training data were included asate for the imbalance of positive (target speaker) and neg-
features, and no smoothing or boosting was employed. Ative (background) samples. This weight is due to the big
lexical SVM model combined with combined with a cepstralmismatch in the number of examples for each class. The
GMM system reduced equal error rate (EER) on the NISTigned distance from the SVM decision boundary was used
2004 evaluation set by 11% over the cepstral system alone, &8 the speaker verification score, and was normalized using
the 1-conversation-side training condition, and by 50% @t T-NORM [12]. Normalization statistics were obtained from
8-side condition. 248 Fisher speaker modél§.he same set of T-NORM speak-

SRl also investigated the effect of using state, phone, an@¥s is for both 1-side and 8-sides training conditions.
word durations for the speaker verification task, employing
GMM log-likelihood ratio models [11]. Such models gave 4. PRONUNCIATION-CONDITIONED WORD
an additional 12% error reduction with combined with both N-GRAM SVM SYSTEM
cepstral GMM and the Doddington word N-gram model. On
the NIST 2004 evaluation task, the word duration model waThe pronunciation-conditioned word N-gram SVM system
shown to be almost as accurate as the SVM N-gram modelims to model speaker-specific word usage patterns, repre-
[4]. The cepstral, lexical, duration, and additional pidiso  sented via pronunciations of the words instead of theilesef
models together achieved more than 60% error reduction ovésrms. Similar to the duration-conditioned lexical moded w

a cepstral GMM by itself. treat the N-gram frequencies of each conversation side as a
feature vector that is classified by a speaker-specific SVM.
3. DURATION-CONDITIONED WORD N-GRAM The prqnu_nciation-con_dit_ioned qud N-gram SVM sys-
SVM SYSTEM tem is built in a very similar fashion to the duration-

conditioned lexical model. The only difference is that word
The duration-conditioned word N-gram-based SVM systeninstances, and hence word N-grams, are differentiatedey th

ai_ms t_o model speaker-spegific word usage patterns combinedzfisher test conversations were trimmed to 2.5 minutes teibetatch
with differences in the durations of frequent words. Foilogv  the average amount of data in NIST SRE data.




Baseline Duration-Conditioned
EER (%)| DCF (x10) | EER (%)| DCF (x10)
Fisher-1 23.14 0.817 19.49 0.743
Fisher-2 21.01 0.734 18.29 0.673

NIST 2004 1-sidef 23.19 0.787 20.52 0.779
NIST 2004 8-sidef  10.93 0.505 10.20 0.486

NIST 2005 1-sidef 24.58 0.860 21.51 0.785

NIST 2005 8-sidef  11.25 0.484 9.03 0.389
NIST 2006 1-side 25.63 0.842 23.46 0.815
NIST 2006 8-sidef 11.14 0.515 9.95 0.446

Table 1. Comparison of the baseline and duration-conditioned&xnodels for various evaluation data sets.

Baseline Duration Conditioned
EER (%) | DCF (x10) | EER (%) | DCF (x10)
NIST 2004 1-side| 23.19 0.787 21.29 0.802
NIST 2004 8-side| 10.93 0.505 10.49 0.568

Table 2. Comparison of the baseline and pronunciation-conditideecal models.

pronunciations (phone strings) in the ASR output. In outthis method. The EER reduction is 8.2% for 1-side and
dataset, on the average there are 1.4 pronunciation alterna0% for 8-side training. However, DCF increases 12.5%
tives per word as determined by the ASR dictionary. Everyfor the 8-side case. These results indicate that while the
N-gram that occurs at least five times in the same backgrourdlration-conditioned model is better for 8-side trainititg
setis included in the N-gram vocabulary of the system, yieldpronunciation-conditioned model is worth consideringyon!
ing a total of 200,000 N-gram types. As before, the featurdor 1-side, and prone to more missed detections for 8-side
values are rank-normalized to the range [0,1], and used int@aining.

linear-kernel SVM. The different behavior of the two models may be due
to the data fragmentation resulting from different proriunc
5. EXPERIMENTS AND RESULTS ations. Note that the fragmentation effect is limited in the

duration-conditioned model for two reasons: the number of
We performed experiments using the two Fisher test sets, airation bins was set at two, and duration is modeled only for
well as NIST 2004, 2005, and 2006 SRE data sets. All SVMhe most frequent words. For future work we are considering
training and scoring was based on a modified version of thbinning of pronunciations to a small number, and limiting th
SVM-Light toolkit [13]. Results are presented in terms of pronunciation-conditioned vocabulary.
equal error rate (EER) and minimum detection cost function To investigate how much our new approach can add to

(DCF) metrics. DCF is defined as a state-of-the-art speaker verification system, we conabine
the duration-conditioned lexical model with a maximum-

DCF = Cup X Prarget X Pup + Cra X (1 — Prargetr) X Pra likelihood linear regression (MLLR) based speaker verifi-
cation system [14]. The MLLR system uses the speaker

whereCyp=10,Cra = 1, andPgpge; = 0.01. adaptation transforms used in speech recognition as ésatur

Table 1 compares the baseline lexical model with the dufor speaker verification. The transforms are estimated us-
ration-conditioned lexical model. Performance can be seeimg MLLR, and can be viewed as a text-independent en-
to improve for all cases. The relative error reductions areapsulation of the speaker’s acoustic properties. Aftek-ra
typically larger for the 8-side condition. For the most re-normalization the MLLR features are modeled by SVMs us-
cent (2006) test set, the EER reduction is 8.5% for 1-side anithg a linear kernel. For combining the lexical model with the
10.7% for 8-side training. The minimum DCF reduction isMLLR system, we employed an SVM-based combiner using
small, only 3.2% for 1-side, but 13.4% for 8-side training.  the individual system scores as features.

Table 2 compares the baseline lexical model with the Table 3 presents the results using the combination of the
pronunciation-conditioned lexical model for the NIST 2004MLLR system with the baseline and duration-conditioned
evaluation data set. We get mixed results when usintexical models for the NIST 2006 evaluation data set. As seen



MLLR only + Baseline N-grams | + Duration-Conditioned N-grams
EER (%) | DCF (x10) | EER (%) | DCF (x10) | EER (%) | DCF (x10)
NIST 2006 1-side| 4.64 0.213 4.69 0.208 4.58 0.210
NIST 2006 8-side| 2.29 0.085 2.19 0.081 2.13 0.080

Table 3. Comparison of the baseline and duration-conditioned¢#xnodels when combined with a baseline acoustic system.

the proposed method gives slightly better equal error rates

than the baseline when combined with the acoustic (MLLR)

system. The DCF is largely unaffected by the choice of lex- [5]

ical models. The largest improvement over the acoustig-onl
system is seen for 8-side training, where the equal errer rat

is reduced by 7.0% relative using the duration-condition N- [6]
grams, compared to only 4.4% relative using the baseline N-

gram model.

We have shown the effectiveness of simultaneously modeling

6. CONCLUSIONS

lexical and acoustic-prosodic features for speaker modgeli
in the form of duration- and pronunciation-condition word N
gram SVM systems. The experimental results using NIST

SRE data sets shows that our approach improves up on star@]

dard lexical N-gram SVM model, and is effective when com-
bined with a state-of-the-art acoustic speaker model. Vige ho
this study will serve as motivation for an open range of pos-
sible ways to simultaneously model multiple feature types.
In future work we are planning to investigate other types of
high-level information for feature-level combination,asl|

as ways to mitigate the data fragmentation problem inherent

in conditioning.
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