
Efficient Lattice Representation and Generation

Fuliang Weng Andreas Stolcke Ananth Sankar

Speech Technology and Research Laboratory
SRI International

Menlo Park, Californiaffuliang,stolcke,sankarg@speech.sri.com

ABSTRACT

In large-vocabulary, multi-pass speech recognition systems, it is de-
sirable to generate word lattices incorporating a large number of
hypotheses while keeping the lattice sizes small. We describe two
new techniques for reducing word lattice sizes without eliminating
hypotheses. The first technique is an algorithm to reduce thesize of
non-deterministic bigram word lattices. The algorithm iteratively
combines lattice nodes and transitions if local propertiesshow that
this does not change the set of allowed hypotheses. On bigramword
lattices generated from Hub4 Broadcast News speech, it reduces lat-
tice sizes by half on average. It was also found to produce smaller
lattices than the standard finite state automaton determinization and
minimization algorithms. The second technique is an improved al-
gorithm for expanding lattices with trigram language models. In-
stead of givingall nodes a unique trigram context, this algorithm
only creates unique contexts for trigrams that are explicitly repre-
sented in the model. Backed-off trigram probabilities are encoded
without node duplication by factoring the probabilities into bigram
probabilities and backoff weights. Experiments on Broadcast News
show that this method reduces trigram lattice sizes by a factor of 6,
and reduces expansion time by more than a factor of 10. Compared
to conventionally expanded lattices, recognition with thecompactly
expanded lattices was also found to be 40% faster, without affecting
recognition accuracy.1

1. INTRODUCTION

In large-vocabulary speech recognition systems, high-accuracy
recognition is achieved with reasonable time and space demands
through a multi-pass process [4], often using lattices as aninterme-
diate representation. In the approach discussed here, all time and
acoustic information is removed from the lattices, and aword lat-
tice (or word graph) is generated, retaining only the language model
(LM) probabilities. The lattice is then used as a constrained LM in
subsequent recognition passes.

To incorporate higher-order LM probabilities, lattices typically un-
dergo an expansion (node duplication) process [6]. It is desirable
to generate lattices containing a large number of paths to mini-
mize errors as a result of the multi-pass search. However, large

1The work reported here was funded by DARPA under contract N66001-
94-C-6048

lattices make expansion with higher-order N-gram LM prohibitive,
and make subsequent recognition passes slow.

To address this problem, we developed two algorithms to reduce
lattice sizes without changing the set of hypotheses encoded. Both
algorithms are evaluated on the DARPA Hub-4 BroadcastNews cor-
pus. The first technique (described in Section 2), reduces the size of
the bigram lattices generated in the first recognition pass.We also
compare the new algorithm with the classic finite state automaton
(FSA) determinization and minimization algorithms. The second
technique (described in Section 3 and evaluated in Section 4) con-
sists of a more compact expansion to trigram lattices. Section 5
concludes.

2. BIGRAM LATTICE REDUCTION

In SRI’s latest Hub4 DECIPHER recognition system [11], bigram
lattices are generated in the backward pass of a forward-backward
two-pass search, based on the word-dependentN-best algorithm [8].
Backward pruning thresholds are used to control lattice sizes. The
lattice generation method is similar to those described by [5] and
[6].

Especially for noisy speech, the generated bigram latticescan be
quite large and therefore costly to expand. A common approach in
this case is to tighten the backward pruning threshold, but lattice er-
ror rates (the minimum word error by any path through the lattice)
increase. Alternatively, we can try to reduce lattice sizesby remov-
ing redundant nodes and transitions, i.e., without changing the set
of word hypotheses allowed by the lattice. Several algorithms with
a similar goal have been developed. One approach is to view the lat-
tices as finite state automata (FSAs) and to apply the classical FSA
minimization algorithm [1]. More recently, algorithms forminimiz-
ing or reducing weighted word lattices have been developed [3, 9].
None of these approachesare directly applicable to our casebecause
DECIPHER word lattices have words on nodes, rather than transi-
tions, and are non-deterministic, i.e., the successor for anode is
not uniquely determined by the following word. FSA determiniza-
tion is thus required, a process with exponential worst-case time
and space complexity (although [3] report very good performance
in practice). We thus chose to develop a fast reduction algorithm
that operates directly on non-deterministic lattices by eliminating
local redundancies.

F0 F1 Total

Before Reduction 12641 45033 30083
After Reduction 6777 23892 15993

Table 1: Bigram lattice sizes before and after reduction.

The key observation underlying our algorithm is that if two nodes
in the lattice have the same word label and the same set of successor
(or predecessor)nodes, they can be merged without changingthe set
of word hypotheses encoded by the lattice. Depending on whether
nodes are merged according to their predecessor node set or their
successor node set, we have a ‘forward’ or a ‘backward’ reduction
pass, respectively. To get the most out of this approach, forward
and backward passes should be iterated until no more redundancies
are found. For brevity, we describe only the backward reduction
algorithm; the forward version is symmetrical.

Backward reduction algorithm: LetSout(n)be the set of succes-
sor nodes of noden. Let word(n) denote the word name of lattice
noden.� For each lattice noden in reverse topological order (starting

with the final node):

– for each pair of predecessor nodes(i; j) of noden:� if word(i) = word(j) andSout(i) = Sout(j), then
merge nodesi and j

The runtime for this algorithm is proportional to the numberof
nodes times some constant that depends on the maximum fan-inand
fan-out of the lattice nodes. A more aggressive reduction algorithm
can be obtained if, instead ofSout(i) = Sout(j), only a certain per-
centage of overlap between the two outgoing node sets is required
for node merging. This will produce smaller lattices but might add
new hypotheses to the lattice. We have not yet evaluated the trade-
offs associated with this variant.

Experimentally, we found that almost all of the eventual size re-
duction occurred in a single pass of the backward algorithm.This
can be explained by the way the recognizer operates. Multiple hy-
potheses of the same word tend to be generated, starting at differ-
ent neighboring frames, but ending at the same time. Furthermore,
lattices tend to be more bushy at the beginning of an utterance; to-
ward the end of the utterance pruning has eliminated a proportion-
ally larger number of hypotheses. Both effects lead to node merging
based on successors being more effective.

We evaluated the effectiveness of the reduction algorithm on lat-
tices generated from the 1996 DARPA Hub4 development test set.
Only the F0 (high-bandwidth, planned speech) and F1 (spontaneous
speech) conditions of that set were included, with F1 generally giv-
ing considerably larger lattices. A single backward reduction pass
reduced lattice sizes by about 50%, as shown in Table 1. Recog-
nition from the reduced lattices gave a very small (not statistically
significant) reduction in word error, which might be a resultof fewer
search errors.

a

b
c

d

e

a

a

b
c

d

e

c

a

(a) Bigram lattice before expansion.

(b) Conventional trigram expansion.

Figure 1: Conventional expansion of a bigram lattice to a trigram
lattice when some incoming nodes have the same label.

We also compared our local reduction algorithm to the FSA deter-
minization/minimization approach. We first converted our node-
based word lattices into the dual FSA representation, a pro-
cess which maps each node to exactly one FSA transition. We
then performed FSA determinization and minimization usingthe
AT&T FSM Toolkit [2]. Since bigram probabilities can always
be retrofitted into a word lattice without changing its structure,
we first set all transition probabilities to 1, effectively turning the
weighted FSA operations into their classical, non-weighted coun-
terparts. For comparison purposes, we then transformed themini-
mized FSA back into a node-based word lattice.2

We found that the local reduction algorithm produced slightly
smaller lattices than the FSA-based determinization/minimization.
The average number of transitions after FSA-based processing was
about 5% larger for Hub4 F0 lattices, and 12% larger for F1 lattices.
Recognition accuracies with both kinds of lattices were identical,
as expected. With regard to recognition speed, the determiniza-
tion/minimization approach could be advantageous becausedeter-
minism narrows the search space at word transitions. However, this
has to be balanced with other overhead in the recognizer thatis pro-
portional to the lattice size (such as time for input). On ourtest set,
and using the DECIPHER recognizer, both non-deterministicre-
duced and determinized/minimized lattices gave virtuallyidentical
recognition times.

3. TRIGRAM LATTICE EXPANSION

The second approach to obtain smaller expanded N-gram lattices
is to optimize the expansion step itself. Again, the purposeof N-
gram lattice expansion is to allow higher-order N-gram probabilities

2The reverse conversion constructs a node for each unique pair of FSA
node and incoming transition symbol. This produces best results if the FSA
is deterministic. Conversions back and forth between the two representa-
tions are designed to be exact inverses.

to be assigned to the word transitions so as to increase accuracy
in subsequent recognition passes. The discussion here is based on
trigram lattices for simplicity, but the ideas generalize to higher-
order N-grams.

To place trigram probabilities on the lattice transitions,we must cre-
ate a unique two-word context for each transition. For example, in
Figure 1, a node labeledc and its transitions(c;d) and(c;e) are du-
plicated to guarantee the uniqueness of the trigram contexts before
placing probabilitiesp(�jac) and p(�jbc) on the transitions. When
a central node with labelc has two predecessor nodes labeled with
the same worda, only one additional node and its corresponding
outgoing transitions must be duplicated. The conventionaltrigram
expansion algorithm [5, 6] performs this node duplication exhaus-
tively, as follows.

Conventional lattice expansion algorithm:� For each noden of the lattice, in topological order:

– For each predecessor nodei of n:� for each successor nodek of n:� if a node j with word(n) was already cre-
ated for trigram context(word(i);word(n))
andword(k), connect nodei to nodej.� otherwise, create nodej and label it with
word(n), connect nodei to node j and node
j to nodek, put p(word(k)jword(i)word(n))
on transition(j;k)

– remove noden and all its incoming and outgoing transi-
tions

While this algorithm correctly implements trigram probabilities in
the lattice, it does so at a considerable increase in latticesize. On our
Hub4 development set, the number of lattice transitions increased
about 10-fold using the conventional approach.

The conventional expansion algorithm ensures unique trigram histo-
ries by copying a node labeledwi if it appears inat least one trigram
wi�1wiwi+1. However, one copy for each predecessorwi�1 in the
lattice is created, even if those predecessors do not have a trigram in
the LM. By contrast, the new expansion algorithm only creates one
copy ofwi for eachexplicit trigram wi�1wiwi+1 in the LM.

The key is to factor backed-off trigram probabilities
p(wi+1jwi�1wi) into the backoff weightbo(wi�1wi) and the
bigram probabilityp(wi+1jwi), and to multiply the backoff weight
onto the weight of the(wi�1;wi) transition, while keeping the
bigram probability on the(wi;wi+1) transition. Thus, no node
duplication is required for those trigrams. Since backoff weights
and probabilities combine multiplicatively, the total score along a
path fromwi�1 throughwi to wi+1 amounts to the correct trigram
probability p(wi+1jwi�1wi).
Figure 2 illustrates the compact expansion idea given that there is
only one explicit trigram probabilityp(djac). Notice that only one
node labeledc and its incoming transition from thea node and out-
going transition to thed node are created.p(djac) is placed on

a

b
c

d

e

f

 where only (a c d) has an explicit trigram probability

(a) Bigram lattice before expansion given a trigram LM

a

b
c

d

e

f

c

c

(b) Conventional trigram expansion.

a

b
c

d

e

f

c

(c) Compact trigram expansion.

Figure 2: Compact expansion of a bigram lattice to a trigram lattice.

the transition from the newc node to thed node. The weight of
the (a;c) transition is copied as well. After the explicit trigrams
are processed, the outgoing transitions from the originalc node are
weighted with their corresponding bigram probabilitiesp(djc) and
p(ejc). Furthermore, bigram backoff weightsbo(ac), bo(bc), and
bo(f c) are multiplied onto the corresponding incoming transitions
of the originalc node.

Compact lattice expansion algorithm: Let weight(i; j) be the
aggregate probability on transition(i; j).
For each noden in the lattice, in topological order:� for each predecessor nodei of n:

– for each successor nodek of n:� if there is an explicit trigram probability for(word(i);word(n);word(k)),� if a node j with word(n) was already cre-
ated for trigram context(word(i);word(n))
andword(k), connect nodei to nodej� otherwise, create nodej, label it with
word(n), connect nodei to node j and
node j to node k, and setweight(j;k) =
p(word(k)jword(i)word(n))� otherwise, mark transitions(i;n) and(n;k)

– if transition(i;n) is not marked remove it

– otherwise, set weight(i;n) = weight(i;n) �
bo(word(i);word(n))� for each end successor nodek of n:

– if transition(n;k) is not marked remove it

– otherwise, setweight(n;k)= p(word(k)jword(n))� if no incoming transitions are marked, remove noden and all
its incoming and outgoing transitions.

Algorithm F0 F1 Total

Conventional 123107 488738 319985
Compact 29113 76396 54573

Conventional/minimized 59559 207535 139238
Compact/minimized 59957 216387 144188

Table 2: Trigram lattice sizes in terms of average number of transi-
tions.

A potential problem for this approach is that even for explicit tri-
gram probabilities, the lattice retains a path using the backoff tran-
sitions, which might have a higher weight than the correct trigram
transition and therefore be preferred during search. For example,
in Figure 2b, there are two paths labeled(a;c;d), and during search
the incorrect lower path will be chosen ifp(djac)< p(djc)�bo(ac).
The proper solution is to preprocess the trigram LM to prune all tri-
gram probabilities that are lower than the corresponding (improper)
backoff estimate, and to renormalize the LM. Experiments onHub4
data showed that in practice, this eliminates only a small fraction of
trigrams, not significantly changing the power of the LM or the final
recognition results. We found that leaving the improper paths in the
lattice also did not have a significant effect on recognitionaccuracy,
compared to using the pruned LM.

4. LATTICE EXPANSION EXPERIMENTS

Experiments were conducted with both the conventional and the
compact trigram expansion algorithms. The trigram LM used for
expansion was SRI’s 1996 Hub4 48,000-word trigram LM de-
scribed in [10]. Using bigram lattices from the Hub4 F0 and F1
development test sets as the input lattices to the two algorithms,
we found that the compact expansion algorithm was 10 times faster
than the conventional algorithm. Furthermore, as shown in Ta-
ble 2, the size of the compact trigram lattices is only about one
sixth that of the conventional ones. We also applied the weighted
determinization/minimization algorithms described in [3] and im-
plemented by [2] to both conventionally and compactly expanded
trigram lattices. As shown in the last two rows of Table 2, deter-
minization/minimization reduced the size of conventionallattices
by 56%. However, determinization and minimization more than
doubled the size of compact trigram lattices. This is likelya result
of the backoff structure, which introduces non-determinism into the
lattice (see Figure 2c).

Recognition experiments were carried out using the (non-
deterministic) conventional and compact trigram latticeswith SRI’s
1997 Hub4 unadapted acoustic models [7]. Word recognition er-
ror rates showed no difference in performance between the conven-
tional and the compact trigram lattices. However, recognition speed
with the compact lattices was 40% faster than with the conventional
lattices.

Given the same time and memory limitations, the more compact
lattice expansion step allowed us to relax the pruning during initial
lattice generation, resulting in a decreased lattice errorrates. Pre-
viously, lattices had been limited to 3.31% word error for the F0
condition and 9.98% for the F1 condition. Using less pruningand

the more efficient expansion, lattice errors were reduced to3.15%
and 7.38%, respectively. At least with our present recognition sys-
tem, however, we did not observe lower final 1-best error rates.

5. CONCLUSION

We have described two algorithms to keep word lattices smallwith-
out sacrificing lattice or word recognition error rates. A bigram
lattice reduction algorithm merges lattice nodes that can be shown
to be locally redundant, halving the size of lattices obtained from
our recognizer. Experimentally, the algorithm seems to be supe-
rior to an alternative approach based on FSA determinization and
minimization. Furthermore, we developed a new trigram lattice ex-
pansion algorithm that reduces trigram lattice sizes by a factor of 6
and expansion time by a factor of 10. Recognition with the resulting
lattices is 40% faster as compared to conventional trigram lattices.
Due to reduced resource demands, we were able to significantly
lower the lattice error rate using the new algorithm.

6. REFERENCES

1. J. E. Hopcroft and J. D. Ullman.Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, Reading, MA, 1979.

2. M. Mohri, F. Pereira, and M. Riley. FSM Library—
general-purpose finite-state machine software tools.
http://www.research.att.com/sw/tools/fsm/.

3. M. Mohri and M. Riley. Weighted determinization and minimization for
large vocabulary speech recognition. In G. Kokkinakis, N. Fakotakis,
and E. Dermatas, editors,Proc. EUROSPEECH, vol. 1, pp. 131–134,
Rhodes, Greece, 1997.

4. H. Murveit, J. Butzberger, V. Digalakis, and M. Weintraub. Large-
vocabulary dictation using SRI’s DECIPHER speech recognition sys-
tem: Progressive search techniques. InProc. ICASSP, vol. II, pp. 319–
322, Minneapolis, 1993.

5. H. Ney and X. Aubert. A word graph algorithm for large vocabulary,
continuous speech recognition. InProc. ICSLP, pp. 1355–1358, Yoko-
hama, 1994.

6. J. Odell. The Use of Context in Large Vocabulary Speech Recog-
nition. Ph.D. thesis, Cambridge University Engineering Department,
Cambridge, U.K., 1995.

7. A. Sankar, F. Weng, Z. Rivlin, A. Stolcke, and R. R. Gadde. The
development of SRI’s 1997 Broadcast News transcription system. In
Proceedings DARPA Broadcast News Transcription and Understand-
ing Workshop, pp. 91–96, Lansdowne, VA, 1998.

8. R. Schwartz and S. Austin. A comparison of several approximate
algorithms for finding multiple (N-BEST) sentence hypotheses. In
Proc. ICASSP, vol. 1, pp. 701–704, Toronto, 1991.

9. N. Ström. Automatic Continuous Speech Recognition with Rapid
Speaker Adaptation for Human/Machine Interaction. Ph.D. thesis,
KTH, Stockholm, 1997.

10. F. Weng, A. Stolcke, and A. Sankar. Hub4 language modeling using do-
main interpolation and data clustering. InProceedings DARPA Speech
Recognition Workshop, pp. 147–151, Chantilly, VA, 1997.

11. F. Weng, A. Stolcke, and A. Sankar. New developments in lattice-based
search strategies in SRI’s Hub4 system. InProceedings DARPA Broad-
cast News Transcription and Understanding Workshop, pp. 138–143,
Lansdowne, VA, 1998.

