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ABSTRACT

We describe a new algorithm for finding the hypothesis in a
recognition lattice that is expected to minimize the word er
ror rate (WER). Our approach thus overcomes the mismatch
between the word-based performance metric and the standard
MAP scoring paradigm that is sentence-based, and that adn le
to sub-optimal recognition results. To this end we first find a
complete alignment of all words in the recognition lattiiwksn-
tifying mutually supporting and competing word hypothesés
nally, a new sentence hypothesis is formed by concateniing
words with maximal posterior probabilities. Experimelytahis
approach leads to a significant WER reduction in a large vocab
ulary recognition task.

1. INTRODUCTION

Word lattices are used by most speech recognizers as a compac
representation of a set of alternative hypotheses. In #relard
MAP decoding approach [1] the recognizer outputs the string
of words corresponding to the path with the highest posterio
probability given the acoustics and a language model. Hewev
even given optimal models, the MAP decoder does not necessar
ily minimize the word error rate (WER). To this end, one slabul
maximize individual word posterior probabilities. Prewsovork

[7] has shown how WER can be explicitly minimized in an N-
best rescoring approach.

We address the problem of extracting word hypotheses with
minimal expected word error from word lattices. Word lagtc
promise better performance than N-best lists for two baesie r
sons. First, they provide a larger set of hypotheses frorshviai
choose; second, the more accurate representation of tteghhyp
esis space gives better estimates for word posterior piidteesh
and, consequently, of expected word error. However, as \We wi
see below, the lattice representation also leads to new atamp
tional problems: it is no longer feasible to compute woraesr
between hypotheses explicitly.

In this paper, we describe a new algorithm for carrying out a
practical, approximate word error minimization on recaigmni
lattices. Our paper is organized as follows. In Section 2 we
give a mathematical formulation of the word error minimiaat
problem and motivate the algorithm, which is described iaitle
in Section 3. Section 4 gives an experimental evaluatiohef t
algorithm. Section 5 discusses related work and other plessi
applications of the methods developed here. Conclusians ar
given in Section 6.

2. APPROACH

2.1. Word Error Minimization

In the standard approach to speech recognition [1], theigdal
find the sentence hypothesis that maximizes the posteiedr pr
ability P(W|A) of the word sequendd given the acoustic in-
formation A. We call this the “sentence MAP” approach. Sen-
tence posteriors are then usually approximated as the produ
of a number of knowledge sources, and normalized. For ex-
ample, given a language mode{¥) and acoustic likelihoods

P(A|W), we can approximate
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wherek ranges over the set of hypotheses output by the recog-
nizer.

Bayesian decision theory (e.g.,[2]) tells us that maxingzi
sentence posteriors minimizes gentence level errqthe prob-
ability of having at least one error in the sentence striktpw-
ever, the commonly used performance metric in speech recog-
nition is word error, i.e., the Levenshtein (string edit) distance
WE(W, R) between a hypothesid” and the reference string
R. WE(W, R) is defined as the number of substitutions, dele-
tions, and insertions ifl’ relative to R under an alignment of
the two strings that minimizes a weighted combination oéhe
error types.

Given word error as our objective function, we can replace
the MAP approach with a new hypothesis selection approach
based on minimizing the expected word error under the pioster
distribution:

Eprian[WEW,R)| = Y P(RIAYWE(W,R)  (2)

2.2. TheN-best Algorithm

Equation 2 provides a general recipe for computing expected
word-level error from sentence-level posterior estimatesli-

rect algorithmic version involves two iterations: a sumiorat
over potential reference® and a minimization over hypotheses
w:

W, = argmin Z P(R(k)|A) WE(W(i), R(k)) ©)
¢ k

We refer to the hypothesig’. thus obtained as theenter hy-
pothesisIn previous work [7], we implemented word error min-
imization in exactly this fashion, letting bot and R range
over the N best hypothesis output by a recognizer. In practice,
this is feasible for N-best lists of as many as a few thousand h
potheses. Others have investigated the N-best approadhnito m
mize objective functions other than standard word errarthss
named-entity recognition metrics [5].

2.3. Lattice-based Word Error Minimization

In moving to lattice-based hypothesis selection, we aredac
with a computational problem. The number of hypotheses con-
tained in a lattice is several orders of magnitudes largan th
N-best lists, making a straightforward computation of teater
hypothesis as in (3) infeasible. A natural approach to thibp
lem is to exploit the structure of the lattice for efficienthepu-
tation of the center hypothesis. Unfortunately, there setenbe

no efficient (e.g., dynamic programming) algorithm of thisck
The main difficulty is that the objective function is basedaiir-
wise string distance, a non-local measure. A single woffémdif
ence anywhere in a lattice path can have global consequences

1The normalization can be omitted for purposes of posteriaxim
mization, but is made explicit here for clarity.



(a) Input lattice (“SIL” marks pauses)

“ n

(b) Multiple alignment (“-

marks deletions)

1 HAVE IT VEAL
Figure 1. From lattices to multiple alignments

the alignment of that path to other paths, preventing a dpoem
sition of the objective function that exploits the lattideusture.

To work around this problem, we decided to replace the orig-
inal pairwise string alignment (which gives rise to the stan
dard string edit distancéVE (W, R)) with a modified, multi-
ple string alignment. The new approach incorporates ditéat
hypothesesinto a single alignment, and word error between any
two hypotheses is then computed according to that one align-
ment. The multiple alignment thus defines a new string edi di
tance, which we will call WE (W, R). While the new align-
ment may in some cases overestimate the word error between
two hypotheses, in practice it should give very similar tssu
On the other hand, the multiple alignment allows us to extrac
the hypothesis with the smallest expected (modified) wanaker
very efficiently.

To see this, consider an example. Figure 1 shows a word lat-
tice and the corresponding hypothesis alignment. Each twprd
pothesis is mapped to a position in the alignment (with dist
marked by “-"). The alignment also supports the computation
of word posterior probabilities The posterior probability of a
word hypothesis is the sum of the posterior probabilitieslbf
lattice paths the word is a part of. Given an alignment and pos
terior probabilities, it is easy to see that the hypothedis the
lowest expected word error is obtained by picking the wortth wi
the highest posterior at each position in the alignment. % c
this theconsensus hypothesis

3. THEALGORITHM

Having given an intuitive idea of word error minimizationseal
on lattice alignment, we can now make these notions more pre-
cise and describe the algorithm in detail. As we saw, the main
complexity of the approach is in finding a good multiple afign
ment of lattice hypotheses, i.e., one that approximategdiire
wise alignments. Once an alignment is found we can determine
the minimizing word hypothesis exactly. However, finding th
optimal alignment itself is a problem for which no efficieiot s
lution is known [6]. Therefore, we resort to a heuristic aygurh
based on lattice topology, as well as time and phoneticinéor
tion associated with word hypotheses.

Let £ be the set of links (or edges) in a word lattice, each link
e being characterized by its starting nablede(e), ending node
Fnode(e), starting timeltime(e), ending timeFtime(e), and
word label Word(e). From the acoustic and language model
scores in the lattice, we can also compute the posterioraprob
bility p(e) of each link, i.e., the sum of posteriors of all paths
throughe. Furthermore, letWords(F) = {w|3e € F :

2|n practice we apply some pruning of the lattice to removepoab-
ability word hypotheses (see Section 3.3).

Word(e) = w} be the set of words, and I') = >__ 5 p(e)
be the total posterior probability of a link subgetC F.

Formally, an alignment consists of an equivalence relation
over the word hypotheses (edges) in the lattice, togethtr wi
a total ordering of the equivalence classes, such that thexiag
is consistent with that of the original lattice. Each eqlénae
class corresponds to one “position” in the alignment, ara th
members of a class are those word hypotheses that are “@dligne
to each other,” i.e., represent alternatives.

The lattice defines a partial ordegron the links. For, f €
B e< fiff

e e=for
e Fnode(e) = Inode(f) or
e Je' € E'suchthat < e’ ande’ < f.

Informally e < f means that “comes before’f in the lattice.

Now let€& ¢ 2% be a set of equivalence classesionand let
=< be a partial order of. We say that< is consistentwith
the lattice order< if e; < ez implies[e:] =< [e2], for all
e1 € [e1],e2 € [e2], [e1],[e2] € £. Consistency means that
the equivalence relation preserves the temporal order ofl wo
hypotheses in the lattice.

Given a lattice, then, we are looking for an ordered link gqui
alence that is consistent with the lattice order and is als® a
tal (linear) order, i.e., for any twe,,e> € F, [e1] < [e2] Or
[e2] = [e1]. Many such equivalences exist; for example, one can
always sort the links topologically and assign each linloits
class. However, such an alignment would be very poor: it doul
vastly overestimate the word error between hypotheses.

We initialize the link equivalence such that each initisdsd
consists of all the links with the same starting and endimgti
and the same word label. Starting with this initial partitiohe
algorithm successively merges equivalence classes unthity
ordered equivalence is obtained.

Correctness and termination of the algorithm are baseden th
following observation. Given a consistent equivalencatieh
with two classest; and E, that are not orderedEy A E-
and F> £ FE1), we can always mergé; and £, to obtain a
new equivalence that is still consistent and has strictiyefeun-
ordered classes. We are thus guaranteed to create a tatally o
dered, consistent equivalence relation after a finite nurobe
steps.

Our clustering algorithm has two stages. We first merge only
clusters corresponding to same word instaniregsafword clus-
tering), and then start grouping together heterogeneous clusters
(inter-word clustering, based on the phonetic similarity of the
word components. At the end of the first stage we are able to
compute word posterior probabilities, but it is only aftee sec-
ond stage that we are able to compare competing word hypothe-
ses in specific regions of the speech signal.

3.1. Intra-word Clustering

The purpose of this step is to group together all the linksezor
sponding to same word instance. Candidates for mergindgsat th
step are all the clusters that are not in relation and cooresjD
the same word. The metric used for intra-word clusteringés t
following similarity measure between two sets of links:
SIM(E1, F2) = max
e1 € b
ex € F»

overlap(er,e2) - p(e1) - p(ez)

whereoverlap(ey, e2 ) is defined as the time overlap between the
two links normalized by the sum of their lengths. The tempora
overlap is weighted by the link posteriors so as to make the-me
sure less sensitive to unlikely word hypotheses. At eaghwste
compute the similarity between all possible pairs of clusén-
didates, and merge those that are most similar. At the eridsof t
iterative process we obtain a link equivalence relation Hzes
overlapping instances of the same word clustered together.



3.2. Inter-word Clustering

At this step we start grouping together clusters corresipgtd
different words. Candidates for merging are any two clagsss
are notin relation. The algorithm stops when no more carnegda
are available, i.e., a total order has been achieved.

The metric used for inter-word clustering is the followirigs
ilarity measure based on a phonetic similarity between word

SIM(Fy, Fy) =
av [ sim(w;, w2)-
w1 € Wo%"ds(Fl) p({e € F1 : Word(e) = w1 })-
wy € Words(Fs) p({e € F2 : Word(e) = w2})]

wheresim(-, ) is the phonetic similarity between two words,
computed using the most likely phonetic base form. In our im-
plementation we defined phonetic similarity to be 1 minus the
edit distance of the two phone strings, normalized by the gim
their lengths. Other, more sophisticated definitions arecew-
able, e.g., by taking phone similarities into account.

3.3. Pruning

Typical word lattices contain links with very low posterjmob-
ability. Such links are negligible in computing the totakperior
probabilities of word hypotheses, but they can have a detrim
tal effect on the alignment. This occurs because the aligmme
preserves consistency with the lattice order, no matter lbow
the probability of the links imposing the order is. For exdenp
in Figure 2 we see BE and ME, which are phonetically similar
and overlap in time, and should therefore be mutually exatus
However, even a single path with BE preceding ME, no mat-
ter how low in probability, will prevent BE and ME from be-
ing aligned. To eliminate such cases we introduce a predirgin
pruning step that removes all links whose posteriors am@bah
empirically determined threshold. The cluster initiafiaa and
subsequent merging only considers links that survive tltialin
pruning.
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Figure 2. Example justifying the pruning step

3.4. Confusion Networks

The total posterior probability of an alignment class can be
strictly less than 1. That happens when there are paths in the
original lattice that do not contain a word at that posititime
missing probability mass corresponds precisely to the ghidb

ity of a deletion (or null word). We explicitly represent débns

by a link e_ with the corresponding empty woord(e_) =

For example, in the lattice in Figure 1(a) there are some hy-
potheses having “I" as the first word, while others have ne cor
responding word in that position. The final alignment thus-co
tains two competing hypotheses in the first position: thedwor
“I” (with posterior equal to the sum of all hypotheses stagti
with that word), and the null word (with posterior equal te th
sum of all other hypotheses).

As illustrated in Figure 1(b), the alignment is itself ecav
lent to a lattice, which we refer to ascanfusion networkThe
confusion network has one node for each equivalence class of
original lattice nodes (plus one initial/final node), andaaént

nodes are linked by one edge per word hypothesis (inclutiieg t
null word).

We can think of the confusion network as a highly compacted
representation of the original lattice with the propertgtthll
word hypotheses are totally ordered. As such, the confursdbn
work has other interesting uses besides word error miniiniza
some of which will be mentioned in Section 5.

3.5. The ConsensusHypothesis

Once we have a complete alignment it is straightforward to ex
tract the hypothesis with the lowest expected word errort Le

Ci;,1=1,..., L bethefinal link equivalence classes making up
the alignment. We need to choose a hypothBSis- w; ... wy,
such thatw; = “-" or w; = Word(e;) for somee; € C;. Itis

easy to see that the expected word errordfs the sum total of
word errors for each position in the alignment. Specifigaiig
expected word error at positiaris

wi £

L un
Ww; = -

1- ZeGC,,Word(e)zw, p(e) If
1— Zeec, p(e) if

In other words, the best hypothesis is obtained by pickieg th
links in the confusion graph that have the highest posteriob-
ability among all links at a given position. This is equivatle
to finding the path through the confusion graph with the highe
combined link weight.

3.6. ScoreScaling

Posterior probability estimates are based on a combinafion
recognizer acoustic and language model scores (Equation 1)
Since the posteriors are combined additively, rather thar-m
imized, it is important to scale the scores correctly. Camtto
standard practice in MAP decoding, it is bettereducethe dy-
namic range of the acoustic scores thannreasethat of the
language model [7]. In our experiments we used

log P(W|A) log P(W) +log P(Q|W) +

%log PA|W) —C

where) is the language model weigh®( Q| V) is the aggregate
pronunciation probability, and’ is a normalization constant.
The parametek was taken from the recognizer generating the
lattice and not optimized for the rescoring procedure.

4. RESULTSAND ANALYSIS

4.1. ComparisontoMAP Scoring

We carried out experiments on the Switchboard conversaltion
telephone speech corpus [4] to test the performance ofdatti
based word error minimization. The first column in Table 1
(Set 1) shows the results on a set of 2427 utterances from 14
conversations that formed the development test set at thé 19
Johns Hopkins University LVCSR Workshop (WS97 dev-test).
The consensus hypothesis results in an absolute WER reducti
of 1.4% over the baseline, the standard MAP approach. To con-
firm the consistency of the improvement we ran similar experi
ments for two more sets of lattices. Set Il consists of lagtifor

the same set of utterances, but obtained with different staou
models. Set lll is based on a different set of utterances asl w
generated using the same acoustic models as Set |, with a base
line WER that is more than 4% higher than that of Set |. On all
three test sets we obtain similar and significant WER redusti
over the baseline.

The algorithm to construct the hypothesis alignment and ex-
tract the best hypothesis is fast: on a 400 MHz Pentium-Hi pro
cessoritran in abouit55x real time on average for the Switch-
board data.

3A word insertion penalty did not prove beneficial, but if used
should also be scaled by.



Word Error Rate (%)
Hypothesis| Setl | Setll | Setlll
MAP 385 40.8 | 429
Consensus| 37.1 | 39.3 | 41.6
A WER -14 | -15 -1.3

Table 1. Comparing the consensus hypotheses to the
baseline
Hypothesis Word Error Rate (%) WER reduction
MAP 38.5 —
N-best (Center) 37.9 -0.6
Lattice (Consensus 37.1 -14
N-best (Consensus 37.4 11

Table 2. Comparison of N-best (center) and lattice-based
(consensus) word error minimization

4.2. LatticesversusN-best lists: Result Analysis

We compared the lattice-based consensus hypothesis to-the N
best based center hypothesis (Equation 3). The maximum num-
ber of hypotheses per utterance was 300. Table 2 shows both
results on the WS97 dev-test data (Set I).

We also conducted two diagnostic experiments to further pin
point where the improvement over the N-best approach was
coming from. First, we computed word posteriors from the lat
tice using the consensus method, but then limited the cladice
sentence hypothesis to those in the N-best list. The resdtav
0.3% higher WER than the plain consensus hypothesis (feest li
in Table 2). We conclude that 0.5% of the overall 0.8% reduncti
comes from improved posterior estimates, while the restbean
attributed to the larger candidate set for hypothesis setec

The second diagnostic experiment was designed to quantify
the difference between the word error resulting from migtip
alignment (/ WE) and the standard word error based on pair-
wise alignment W£). We sampled a large number of pairs
of hypotheses from the posterior distribution represehtedur
lattices, and compare®@’F and MWE. The total number of
substitutions, deletions, and insertions under the twmatients
differed by only 0.15 on average. This shows that the subwgti
nature of the alignment is negligible in practice, and mbamnt
justified by the computational advantages it affords.

5. RELATED AND FUTURE WORK

In essence, our approach replasestence-levglosterior prob-
abilities withword-levelposteriors as the objective function for
speech recognition, corresponding to the word-based sredr
ric commonly used. As a result, our method is related to séver
algorithms based on posterior word probabilities. Corelgrs
our method is essentially an estimator of posterior wordvaro
bilities, and as such could benefit a number of other taskse,He
we point out some of these related tasks.

As shown in [9],wordspottingcan be accomplished by esti-
mating word posteriors from the N-best output of a large oea
lary recognizer. Based on our results, we would expect ingito
wordspotting results when using the lattice-based pastedb-
tained as described here.

A closely related problem is the estimation wbrd confi-
dence measurdsr large vocabulary recognizers. The N-best
based posterior is one of the most informative featuresdar c
fidence estimation [8]; consequently, we can expect imgfove
results with lattice-based posteriors. Conversely, warlcon-
fidence measures suggests that other recognizer featuré® ca
combined with acoustic and language model scores to yield im
proved posterior estimates, and therefore fewer word®rror

Finally, we note that our algorithm is similar to the ROVER al
gorithm for combining 1-best outputs from multiple recamprs
[3], in that it combines multiple, weighted hypotheses atin-
gle alignment for voting at the word level. We note that ROVER

might give even better results if it used not just the 1-bet o
put from various recognizers, but instead used the full esioh
networks and associated posteriors from each recognizer.

6. CONCLUSION

We have developed a new method for finding the sentence in a
recognition lattice that minimizes expected word erroriken

the standard MAP approach that minimizes sentence err@. Th
core of the method is a clustering procedure that identifigtsim
ally supporting and competing word hypothesesin a lattoe;
structing a total order over all word hypotheses. Togethtr w
word posterior probabilities computed from recognizerrssp
this allows an efficient extraction of the hypothesis witmimi
mum expected number of errors. Experiments on the Switch-
board corpus show that this approach results in significd8RW
reductions, both over the standard MAP approach and compare
to a previous word error minimization technique based orelitb
lists.
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