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ABSTRACT

We describe a new algorithm for finding the hypothesis in a
recognition lattice that is expected to minimize the word er-
ror rate (WER). Our approach thus overcomes the mismatch
between the word-based performance metric and the standard
MAP scoring paradigm that is sentence-based, and that can lead
to sub-optimal recognition results. To this end we first find a
complete alignment of all words in the recognition lattice,iden-
tifying mutually supporting and competing word hypotheses. Fi-
nally, a new sentence hypothesis is formed by concatenatingthe
words with maximal posterior probabilities. Experimentally, this
approach leads to a significant WER reduction in a large vocab-
ulary recognition task.

1. INTRODUCTION

Word lattices are used by most speech recognizers as a compact
representation of a set of alternative hypotheses. In the standard
MAP decoding approach [1] the recognizer outputs the string
of words corresponding to the path with the highest posterior
probability given the acoustics and a language model. However,
even given optimal models, the MAP decoder does not necessar-
ily minimize the word error rate (WER). To this end, one should
maximize individual word posterior probabilities. Previous work
[7] has shown how WER can be explicitly minimized in an N-
best rescoring approach.

We address the problem of extracting word hypotheses with
minimal expected word error from word lattices. Word lattices
promise better performance than N-best lists for two basic rea-
sons. First, they provide a larger set of hypotheses from which to
choose; second, the more accurate representation of the hypoth-
esis space gives better estimates for word posterior probabilities
and, consequently, of expected word error. However, as we will
see below, the lattice representation also leads to new computa-
tional problems: it is no longer feasible to compute word errors
between hypotheses explicitly.

In this paper, we describe a new algorithm for carrying out a
practical, approximate word error minimization on recognition
lattices. Our paper is organized as follows. In Section 2 we
give a mathematical formulation of the word error minimization
problem and motivate the algorithm, which is described in detail
in Section 3. Section 4 gives an experimental evaluation of the
algorithm. Section 5 discusses related work and other possible
applications of the methods developed here. Conclusions are
given in Section 6.

2. APPROACH

2.1. Word Error Minimization
In the standard approach to speech recognition [1], the goalis to
find the sentence hypothesis that maximizes the posterior prob-
ability P (W jA) of the word sequenceW given the acoustic in-
formationA. We call this the “sentence MAP” approach. Sen-
tence posteriors are then usually approximated as the product
of a number of knowledge sources, and normalized. For ex-
ample, given a language modelP (W ) and acoustic likelihoods

P (AjW ), we can approximate1P (W jA) � P (W )P (AjW )Pk P (W (k))P (AjW (k)) (1)

wherek ranges over the set of hypotheses output by the recog-
nizer.

Bayesian decision theory (e.g.,[2]) tells us that maximizing
sentence posteriors minimizes thesentence level error(the prob-
ability of having at least one error in the sentence string).How-
ever, the commonly used performance metric in speech recog-
nition is word error, i.e., the Levenshtein (string edit) distanceWE (W;R) between a hypothesisW and the reference stringR. WE (W;R) is defined as the number of substitutions, dele-
tions, and insertions inW relative toR under an alignment of
the two strings that minimizes a weighted combination of these
error types.

Given word error as our objective function, we can replace
the MAP approach with a new hypothesis selection approach
based on minimizing the expected word error under the posterior
distribution:EP (RjA)[WE (W;R)] =XR P (RjA)WE(W;R) (2)

2.2. The N-best Algorithm
Equation 2 provides a general recipe for computing expected
word-level error from sentence-level posterior estimates. A di-
rect algorithmic version involves two iterations: a summation
over potential referencesR and a minimization over hypothesesW : Wc = argmini Xk P (R(k)jA)WE(W (i); R(k)) (3)

We refer to the hypothesisWc thus obtained as thecenter hy-
pothesis. In previous work [7], we implemented word error min-
imization in exactly this fashion, letting bothW andR range
over theN best hypothesis output by a recognizer. In practice,
this is feasible for N-best lists of as many as a few thousand hy-
potheses. Others have investigated the N-best approach to mini-
mize objective functions other than standard word error, such as
named-entity recognition metrics [5].

2.3. Lattice-based Word Error Minimization
In moving to lattice-based hypothesis selection, we are faced
with a computational problem. The number of hypotheses con-
tained in a lattice is several orders of magnitudes larger than in
N-best lists, making a straightforward computation of the center
hypothesis as in (3) infeasible. A natural approach to this prob-
lem is to exploit the structure of the lattice for efficient compu-
tation of the center hypothesis. Unfortunately, there seems to be
no efficient (e.g., dynamic programming) algorithm of this kind.
The main difficulty is that the objective function is based onpair-
wise string distance, a non-local measure. A single word differ-
ence anywhere in a lattice path can have global consequenceson1The normalization can be omitted for purposes of posterior maxi-
mization, but is made explicit here for clarity.



(a) Input lattice (“SIL” marks pauses)
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(b) Multiple alignment (“-” marks deletions)

- -

I

MOVE

HAVE IT VEAL 

VERY

FINE

OFTEN

FAST

Figure 1. From lattices to multiple alignments

the alignment of that path to other paths, preventing a decompo-
sition of the objective function that exploits the lattice structure.

To work around this problem, we decided to replace the orig-
inal pairwise string alignment (which gives rise to the stan-
dard string edit distanceWE (W;R)) with a modified, multi-
ple string alignment. The new approach incorporates all lattice
hypotheses2 into a single alignment, and word error between any
two hypotheses is then computed according to that one align-
ment. The multiple alignment thus defines a new string edit dis-
tance, which we will callMWE (W;R). While the new align-
ment may in some cases overestimate the word error between
two hypotheses, in practice it should give very similar results.
On the other hand, the multiple alignment allows us to extract
the hypothesis with the smallest expected (modified) word error
very efficiently.

To see this, consider an example. Figure 1 shows a word lat-
tice and the corresponding hypothesis alignment. Each wordhy-
pothesis is mapped to a position in the alignment (with deletions
marked by “-”). The alignment also supports the computation
of word posterior probabilities. The posterior probability of a
word hypothesis is the sum of the posterior probabilities ofall
lattice paths the word is a part of. Given an alignment and pos-
terior probabilities, it is easy to see that the hypothesis with the
lowest expected word error is obtained by picking the word with
the highest posterior at each position in the alignment. We call
this theconsensus hypothesis.

3. THE ALGORITHM

Having given an intuitive idea of word error minimization based
on lattice alignment, we can now make these notions more pre-
cise and describe the algorithm in detail. As we saw, the main
complexity of the approach is in finding a good multiple align-
ment of lattice hypotheses, i.e., one that approximates thepair-
wise alignments. Once an alignment is found we can determine
the minimizing word hypothesis exactly. However, finding the
optimal alignment itself is a problem for which no efficient so-
lution is known [6]. Therefore, we resort to a heuristic approach
based on lattice topology, as well as time and phonetic informa-
tion associated with word hypotheses.

LetE be the set of links (or edges) in a word lattice, each linke being characterized by its starting nodeInode(e), ending nodeFnode(e), starting timeItime(e), ending timeFtime(e), and
word labelWord(e). From the acoustic and language model
scores in the lattice, we can also compute the posterior proba-
bility p(e) of each link, i.e., the sum of posteriors of all paths
through e. Furthermore, letWords(F ) = fwj9e 2 F :2 In practice we apply some pruning of the lattice to remove lowprob-
ability word hypotheses (see Section 3.3).

Word(e) = wg be the set of words, andp(F ) = Pe2F p(e)
be the total posterior probability of a link subsetF � E.

Formally, an alignment consists of an equivalence relation
over the word hypotheses (edges) in the lattice, together with
a total ordering of the equivalence classes, such that the ordering
is consistent with that of the original lattice. Each equivalence
class corresponds to one “position” in the alignment, and the
members of a class are those word hypotheses that are “aligned
to each other,” i.e., represent alternatives.

The lattice defines a partial order� on the links. Fore; f 2E, e � f iff� e = f or� Fnode(e) = Inode(f) or� 9e0 2 E such thate � e0 ande0 � f .

Informally e � f means thate “comes before”f in the lattice.
Now letE � 2E be a set of equivalence classes onE, and let� be a partial order onE. We say that� is consistentwith

the lattice order� if e1 � e2 implies [e1] � [e2], for alle1 2 [e1]; e2 2 [e2], [e1]; [e2] 2 E. Consistency means that
the equivalence relation preserves the temporal order of word
hypotheses in the lattice.

Given a lattice, then, we are looking for an ordered link equiv-
alence that is consistent with the lattice order and is also ato-
tal (linear) order, i.e., for any twoe1; e2 2 E, [e1] � [e2] or[e2] � [e1]. Many such equivalences exist; for example, one can
always sort the links topologically and assign each link itsown
class. However, such an alignment would be very poor: it would
vastly overestimate the word error between hypotheses.

We initialize the link equivalence such that each initial class
consists of all the links with the same starting and ending time
and the same word label. Starting with this initial partition, the
algorithm successively merges equivalence classes until atotally
ordered equivalence is obtained.

Correctness and termination of the algorithm are based on the
following observation. Given a consistent equivalence relation
with two classesE1 andE2 that are not ordered (E1 6� E2
andE2 6� E1), we can always mergeE1 andE2 to obtain a
new equivalence that is still consistent and has strictly fewer un-
ordered classes. We are thus guaranteed to create a totally or-
dered, consistent equivalence relation after a finite number of
steps.

Our clustering algorithm has two stages. We first merge only
clusters corresponding to same word instances (intra-word clus-
tering), and then start grouping together heterogeneous clusters
(inter-word clustering), based on the phonetic similarity of the
word components. At the end of the first stage we are able to
compute word posterior probabilities, but it is only after the sec-
ond stage that we are able to compare competing word hypothe-
ses in specific regions of the speech signal.

3.1. Intra-word Clustering
The purpose of this step is to group together all the links corre-
sponding to same word instance. Candidates for merging at this
step are all the clusters that are not in relation and correspond to
the same word. The metric used for intra-word clustering is the
following similarity measure between two sets of links:SIM(E1; E2) = maxe1 2 E1e2 2 E2 overlap(e1; e2) � p(e1) � p(e2)
whereoverlap(e1; e2) is defined as the time overlap between the
two links normalized by the sum of their lengths. The temporal
overlap is weighted by the link posteriors so as to make the mea-
sure less sensitive to unlikely word hypotheses. At each step we
compute the similarity between all possible pairs of cluster can-
didates, and merge those that are most similar. At the end of this
iterative process we obtain a link equivalence relation that has
overlapping instances of the same word clustered together.



3.2. Inter-word Clustering
At this step we start grouping together clusters corresponding to
different words. Candidates for merging are any two classesthat
are not in relation. The algorithm stops when no more candidates
are available, i.e., a total order has been achieved.

The metric used for inter-word clustering is the following sim-
ilarity measure based on a phonetic similarity between words:SIM(F1; F2) =avgw1 2Words(F1)w2 2Words(F2) [ sim(w1; w2)�p(fe 2 F1 : Word(e) = w1g)�p(fe 2 F2 : Word(e) = w2g)]
wheresim(�; �) is the phonetic similarity between two words,
computed using the most likely phonetic base form. In our im-
plementation we defined phonetic similarity to be 1 minus the
edit distance of the two phone strings, normalized by the sumof
their lengths. Other, more sophisticated definitions are conceiv-
able, e.g., by taking phone similarities into account.

3.3. Pruning
Typical word lattices contain links with very low posteriorprob-
ability. Such links are negligible in computing the total posterior
probabilities of word hypotheses, but they can have a detrimen-
tal effect on the alignment. This occurs because the alignment
preserves consistency with the lattice order, no matter howlow
the probability of the links imposing the order is. For example,
in Figure 2 we see BE and ME, which are phonetically similar
and overlap in time, and should therefore be mutually exclusive.
However, even a single path with BE preceding ME, no mat-
ter how low in probability, will prevent BE and ME from be-
ing aligned. To eliminate such cases we introduce a preliminary
pruning step that removes all links whose posteriors are below an
empirically determined threshold. The cluster initialization and
subsequent merging only considers links that survive the initial
pruning.
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Figure 2. Example justifying the pruning step

3.4. Confusion Networks
The total posterior probability of an alignment class can be
strictly less than 1. That happens when there are paths in the
original lattice that do not contain a word at that position;the
missing probability mass corresponds precisely to the probabil-
ity of a deletion (or null word). We explicitly represent deletions
by a link e� with the corresponding empty wordWord(e�) =
“-”.

For example, in the lattice in Figure 1(a) there are some hy-
potheses having “I” as the first word, while others have no cor-
responding word in that position. The final alignment thus con-
tains two competing hypotheses in the first position: the word
“I” (with posterior equal to the sum of all hypotheses starting
with that word), and the null word (with posterior equal to the
sum of all other hypotheses).

As illustrated in Figure 1(b), the alignment is itself equiva-
lent to a lattice, which we refer to as aconfusion network. The
confusion network has one node for each equivalence class of
original lattice nodes (plus one initial/final node), and adjacent

nodes are linked by one edge per word hypothesis (including the
null word).

We can think of the confusion network as a highly compacted
representation of the original lattice with the property that all
word hypotheses are totally ordered. As such, the confusionnet-
work has other interesting uses besides word error minimization,
some of which will be mentioned in Section 5.

3.5. The Consensus Hypothesis
Once we have a complete alignment it is straightforward to ex-
tract the hypothesis with the lowest expected word error. LetCi; i = 1; : : : ; L be the final link equivalence classes making up
the alignment. We need to choose a hypothesisW = w1 : : : wL
such thatwi = “-” or wi = Word(ei) for someei 2 Ci. It is
easy to see that the expected word error ofW is the sum total of
word errors for each position in the alignment. Specifically, the
expected word error at positioni is1�Pe2Ci;Word(e)=wi p(e) if wi 6= “-”1�Pe2Ci p(e) if wi = “-”

In other words, the best hypothesis is obtained by picking the
links in the confusion graph that have the highest posteriorprob-
ability among all links at a given position. This is equivalent
to finding the path through the confusion graph with the highest
combined link weight.

3.6. Score Scaling
Posterior probability estimates are based on a combinationof
recognizer acoustic and language model scores (Equation 1).
Since the posteriors are combined additively, rather than max-
imized, it is important to scale the scores correctly. Contrary to
standard practice in MAP decoding, it is better toreducethe dy-
namic range of the acoustic scores than toincreasethat of the
language model [7]. In our experiments we usedlog P (W jA) = log P (W ) + log P (QjW ) +1� log P (AjW ) �C
where� is the language model weight,P (QjW ) is the aggregate
pronunciation probability, andC is a normalization constant.3
The parameter� was taken from the recognizer generating the
lattice and not optimized for the rescoring procedure.

4. RESULTS AND ANALYSIS

4.1. Comparison to MAP Scoring
We carried out experiments on the Switchboard conversational
telephone speech corpus [4] to test the performance of lattice-
based word error minimization. The first column in Table 1
(Set I) shows the results on a set of 2427 utterances from 14
conversations that formed the development test set at the 1997
Johns Hopkins University LVCSR Workshop (WS97 dev-test).
The consensus hypothesis results in an absolute WER reduction
of 1.4% over the baseline, the standard MAP approach. To con-
firm the consistency of the improvement we ran similar experi-
ments for two more sets of lattices. Set II consists of lattices for
the same set of utterances, but obtained with different acoustic
models. Set III is based on a different set of utterances and was
generated using the same acoustic models as Set I, with a base-
line WER that is more than 4% higher than that of Set I. On all
three test sets we obtain similar and significant WER reductions
over the baseline.

The algorithm to construct the hypothesis alignment and ex-
tract the best hypothesis is fast: on a 400 MHz Pentium-II pro-
cessor it ran in about0:55� real time on average for the Switch-
board data.3A word insertion penalty did not prove beneficial, but if usedit
should also be scaled by1� .



Word Error Rate (%)
Hypothesis Set I Set II Set III
MAP 38.5 40.8 42.9
Consensus 37.1 39.3 41.6� WER -1.4 -1.5 -1.3

Table 1. Comparing the consensus hypotheses to the
baseline

Hypothesis Word Error Rate (%) WER reduction
MAP 38.5 –
N-best (Center) 37.9 -0.6
Lattice (Consensus) 37.1 -1.4
N-best (Consensus) 37.4 -1.1

Table 2. Comparison of N-best (center) and lattice-based
(consensus) word error minimization

4.2. Lattices versus N-best lists: Result Analysis
We compared the lattice-based consensus hypothesis to the N-
best based center hypothesis (Equation 3). The maximum num-
ber of hypotheses per utterance was 300. Table 2 shows both
results on the WS97 dev-test data (Set I).

We also conducted two diagnostic experiments to further pin-
point where the improvement over the N-best approach was
coming from. First, we computed word posteriors from the lat-
tice using the consensus method, but then limited the choiceof
sentence hypothesis to those in the N-best list. The result was a
0.3% higher WER than the plain consensus hypothesis (last line
in Table 2). We conclude that 0.5% of the overall 0.8% reduction
comes from improved posterior estimates, while the rest canbe
attributed to the larger candidate set for hypothesis selection.

The second diagnostic experiment was designed to quantify
the difference between the word error resulting from multiple
alignment (MWE ) and the standard word error based on pair-
wise alignment (WE ). We sampled a large number of pairs
of hypotheses from the posterior distribution representedby our
lattices, and comparedWE andMWE . The total number of
substitutions, deletions, and insertions under the two alignments
differed by only 0.15 on average. This shows that the suboptimal
nature of the alignment is negligible in practice, and more than
justified by the computational advantages it affords.

5. RELATED AND FUTURE WORK

In essence, our approach replacessentence-levelposterior prob-
abilities withword-levelposteriors as the objective function for
speech recognition, corresponding to the word-based errormet-
ric commonly used. As a result, our method is related to several
algorithms based on posterior word probabilities. Conversely,
our method is essentially an estimator of posterior word proba-
bilities, and as such could benefit a number of other tasks. Here,
we point out some of these related tasks.

As shown in [9],wordspottingcan be accomplished by esti-
mating word posteriors from the N-best output of a large vocabu-
lary recognizer. Based on our results, we would expect improved
wordspotting results when using the lattice-based posteriors ob-
tained as described here.

A closely related problem is the estimation ofword confi-
dence measuresfor large vocabulary recognizers. The N-best
based posterior is one of the most informative features for con-
fidence estimation [8]; consequently, we can expect improved
results with lattice-based posteriors. Conversely, work on con-
fidence measures suggests that other recognizer features can be
combined with acoustic and language model scores to yield im-
proved posterior estimates, and therefore fewer word errors.

Finally, we note that our algorithm is similar to the ROVER al-
gorithm for combining 1-best outputs from multiple recognizers
[3], in that it combines multiple, weighted hypotheses intoa sin-
gle alignment for voting at the word level. We note that ROVER

might give even better results if it used not just the 1-best out-
put from various recognizers, but instead used the full confusion
networks and associated posteriors from each recognizer.

6. CONCLUSION

We have developed a new method for finding the sentence in a
recognition lattice that minimizes expected word error, unlike
the standard MAP approach that minimizes sentence error. The
core of the method is a clustering procedure that identifies mutu-
ally supporting and competing word hypotheses in a lattice,con-
structing a total order over all word hypotheses. Together with
word posterior probabilities computed from recognizer scores,
this allows an efficient extraction of the hypothesis with mini-
mum expected number of errors. Experiments on the Switch-
board corpus show that this approach results in significant WER
reductions, both over the standard MAP approach and compared
to a previous word error minimization technique based on N-best
lists.
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