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16.1 Introduction

As we saw in Chapter 14, the speech recognition problem can be formulated
as the search for the best hypothesised word sequence given an input feature
sequence. The search is based on probabilistic models trained on many utter-
ances:

W = argmaz P(X | W)P(W)
w

In the equation above? (X | W) is called the acoustic model, adt{W)
is called the language model (LM).

In this chapter we present several techniques that were used to develop lan-
guage models for the speech recognisers in the SLT system. The algorithm
presented here deal with two main issues: the data-sparseness problem and the
development of language models for multilingual recognisers.

As with acoustic modelling, sparse training data is one of the maih-pr
lems in language modelling tasks. In both cases, we ideally want to have
enough properly matched data to train models for all the necessary cordition
One may think that today’s technology, especially the Internet and th&dWor
Wide Web, lets us take for granted the availability of any amount of laggu
modelling training data. Unfortunately, this is not entirely true, tforee rea-
sons:

Style mismatch: Internet-derived data is usually written text, which does not
have the same style as spoken material.

Language mismatch: The available texts are not uniformly distributed with
respect to different languages: there is plenty of data available fordbngli
but not for other languages.
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Domain mismatch: The texts are not specifically organized for any speech
recognition task.

Ignoring these mismatches can cause significant degradation to the perfor-
mance of speech recognition systems. On the other hand, fully satisfigng
may introduce data-sparseness problems.

For these reasons, we want to investigate various ways that allow us to
rapidly collect proper amounts of data for new domains and new languages,
and to train compact language models with high performance. Since human
beings are the ultimate producers and consumers of human languages, it is
also desirable to leverage the strength of symbolic approaches fatistati
language modelling.

We have experimented with several approaches aimed at tackling the data-
sparseness problem. In the following sections, we will present datesdision
techniques, data-retrieval techniques, class-based n-gram approaches and class-
based n-gram generalisation algorithms. We will also present our methdds
experiments for handling multilingual language modelling.

In the interests of making the chapter self-contained, we briefly sumenaris
a couple of key technical ideas. One very common type of LM isttestical
n-gram language model; this is an(n — 1)th order Markov model, where the
probability of one word in the sentence depends omthel previous words.

n iS most often equal to 2, resulting in thigram language model. In a bigram
LM, the probability of one wordu,, in the sentence, given the history of all
previous wordsv; , wa, . . ., w,—1, depends only on the previous word:

p(wn|w17w27 e 7wn71) = p(wn|wn71)

LMs are also frequently constructed by use of interpolation. An interpo
lated language model computes the probability of a wordiven the history
of previous words (or word classeH), as a linear combination of the proba-
bilities given by two or more language models. In the case of two mpdels
andB, this probability can be expressed as

p(w|H) = X-pa(w|H) + (1= A) - pp(w|H),

wherepa (w|H),pp(w|H) are the two language models ahds the interpo-
lation weight between 0 and 1. Notice thatan also be a function df .



16 SLT Book Chapter — Draft Wed Dec 15 13:21:22 PST 1999 283

Table 16.1. Word-error rate with fabricated
LM training data

System Training data WER (%
Baseline 220000 words 5.73
No LM 0 39.10

FabPhrase 1300 000 words 14.66
FabSentence 1500000 words 12.49

16.2 Fabricating Domain-Specific Data

The data-sparseness problem for language-model training can be alleviated us
ing grammars written by human language experts. It is well known thst it
difficult to write a full-sentence grammar for a general domain, or evea fo
limited domain. However, our experience has shown that it is quite nehto

to assume that a grammarian can write a phrase grammar for a limited domain
within a few weeks. The key advantage of a phrase grammar is that it can cap-
ture almost all the necessary information needed for the domain withoird

to exhaustively consider all the possible phrase combinations xaan@e, in

the ATIS domain, it is quite easy to write down the most frequenglyduex-
pressions for dates, times, costs, locations, transportation, medlsyraral

and departure events. Because phrase subgrammars are modular (Weng and
Stolcke 1995), many expressions, such as dates, times, locations,rabensy

can be used across different domains. Therefore, moving into a new damain i
even easier after phrase grammars have been written for some initial domains

There are two potential ways to apply phrase grammars for language mod-
elling. One is to use phrase grammars to generate random phrases am to trai
statistical language models, that is, fabricate domain-specific data. The
other is to embed phrase subgrammars in statistical language modelsayn a w
similar to class-based language modelling. We will discuss in detasietbend
approach in Section 16.5.

We conducted a set of initial experiments in 1995, when we first took an
English phrase grammar adapted from SRI's ATIS template matcher system
(Jackson et al. 1991). This phrase grammar uses a vocabulary of 1 75Q words
and about 200 non-terminals with approximately 3600 rules. The najufti
the rules are simply names (city names, airport names, etc.) with indicative
words, such as prepositidrom for departure location ant for destination.

The SRI 1994 ATIS speech recognition benchmark system (Cohen, Rivlin,
and Bratt 1995) was adapted for our real time SLT task. The resulting baseli
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Table 16.2. Wbrd-error rate with interpolated real
training data

Real Data Interpolated LM Real Data Only LM
(#Words) Weight WER (%) WER (%)

0 0.0 12.49 39.10

10000 .9 7.75 9.14

20000 .97 7.10 7.81

30000 .97 6.65 7.12

40000 .97 6.52 7.10

50000 .95 6.27 6.89
100000 .92 5.86 6.12
220000 .97 5.69 5.73

speech recogniser has 5.73% word error rate with a bigram language model
trained on 220000 words of ATIS domain datalab. 16.1 contrasts perfor-
mance of this LM with bigram LMs trained on two artificial corpora. Thetfirs

of these (FabPhrase) consisted of 300000 phrases (1.3 million wamms)
domly generated using the phrase grammar. The second (FabSentence) has
100000 fabricated sentences (1.5 million words) with in-vocabularydgvor
randomly inserted in between the phrases. For completeness, we also con-
ducted a set of experiments that linearly interpolated the FabSentence model
with the models trained on different amounts of real data. The results@re p
sented in Tab. 16.2.

Without using any real training data, the LM trained on 100 000 fabricated
sentences led to an almost usable speech recogniser, which we found quite
encouraging. A refinement, which we hope to investigate in the futute, is
incorporate phrase tags in the tag set of the corpus. This could thesede u
to create a statistical n-gram tag model which in turn would be used to fabri
cate sentences. The idea is related to the class n-gram generalisation approach
discussed in Section 16.5.

16.3 Better Use of Domain-General Data

Successful statistical language modelling requires large amounts of @omai
specific data, which are not always available. As discussed above, direct use
of widely available domain-general data often leads to unsatisfactorytsesul

1 All the experiments in this section were carried out on the4lIBARPA benchmark evaluation
male test set, which contains 443 sentences and a total &f wé@ls.
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due to vocabulary and style mismatches. One straightforward way to attack
the problem (lyer, Ostendorf, and Rohlicek 1994) is to interpolate-gram

LM trained on small amounts of available domain-specific data with another
n-gram LM trained on large amounts of domain-general data. By adjustng th
weight of the domain-specific LM to a high value, one can reduce the effect of
the mismatches in training data, but at the same time inherit robustoess

the general LM.

By interpolating a domain-specific n-gram LM with a general n-gram LM,
we utilise only local properties of the domain-general data, typicallytfor
bigram LMs. However, many of these local counts are irrelevant botheto th
domain and to the global constraints of the language. Including theeftner
serves no useful purpose, and only degrades the quality of the LMabhst
of extracting n-gram counts directly from domain-general data, an alteenativ
approach is to start by attempting to identify a subset of the generaledated
to the domain we are interested in, and extract counts only from that.

One of the assumptions of this approach is that so-called general data really
consists of a mixture of data from many different specific domains.ranst
of research in traditional Artificial Intelligence (Al) has for a long tia@vo-
cated a script-based approach to language understanding (Schank and Abelson
1977), based on the assumption that shared human knowledge is organized i
the form of scripts: routine procedures that people perform foeuifit tasks
and have an organisation that is well reflected in language. They are possibly
related to the concept of domain organisation. Interestingly, our chiseng
have several points of contact with script-based research.

With these ideas in mind, we designed a set of experiments in 1995. We
selected some relevant news articles from Usenet news groups and the Switch
board corpus LM data to conduct the experiments. To filter these corpora
and retrieve relevant data, a distance measure was required. Adopted from
information theory, perplexity is commonly used in language maugkis a
measure of the fit between model and data. It is defined as:

Perplexity = 9~ EmEVT p'(z)*log P(:':)7
wherep(z) is the probabilistic distribution of the model,(z) is the estimated
probability from text datdl’, and Vr is the vocabulary of". The lower the
perplexity number, the better the model fits the data. Here, we use it as a
distance measure for selecting sentences that are close to a given seed model.

2 The Switchboard corpus is a conversational speech datab#seted over the telephone that
includes a variety of conversation topics.
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We first took articles from Usenet rec.travel.* news groups covering May
and August of 1995, using the FabPhrase model from Section 16.2 sadtie
model. Because many words in the general data were out of domain vocabulary
(O0V), we only obtained 1 700 sentence fragments or chunks (as opposed to
full sentences) totaling 11 000 words. We also tried using the Swotaftb
corpus as the domain-general data, hoping that the conversational styles and
travel topics captured by that data could be helpful for the ATIS donidie.
filtering process on Switchboard data yielded about 85000 chunksntptali
288000 words. Two language models, which we will galis®> andswb, were
built using the two data sets just described.

We performed conventional interpolation of the models as baselines. As we
can seein Tab. 16.3, the interpolated models gnus+FabPhrase and swb#aBabPhr
both produce significant improvements over all the three individualets
and in particular over the FabPhrase model. We also combined all three lan-
guage models (gnhus+swb+FabPhrase) obtaining a further small impravemen
All the recognition results are listed in Tab. 16.3.

These results show that using general-domain data can significantly im-
prove an in-domain model. We also experimented with selective usage of
general-domain data. A language model was built, that weighted more heavily
(0.9) the low perplexity fragments from the general-domain (Switeiné and
gnus) data extracted using the FabPhrase model: we catiadsvb.median.

This LM was then interpolated with the fabricated data to yield yet another
model, gnuswb.median+FabPhrase. The gain from selective usage of general-
domain data was smaller than expected, and we attribute this largely to our
simplistic use of perplexity as a distance measure for retrievirgyaat sen-

tence fragments. For example, chunks ending with “the”, such as “l was just
wondering if the”, and “when checking into the originating flight and theé&, ar
quite frequent, and this distorts the perplexity of relevant phraste gen-

eral data that end with “the”. Hence, some preprocessing is required in order
to make this distance measure more effective. Alternative distance measures
also need to be investigated, including labeling sentences with phrase gram-
mars and preferring ones with high phrase label coverage. Another possible
reason for this smaller-than-expected gain can be the fabricated seed model,
FabPhrase. As explained before, FabPhrase is trained on randomly generated
phrases from the phrase grammar. Therefore, this model does not fudigtrefi

the real probabilistic distribution of any real in-domain data, espgdialihe

case of phrase boundaries. An improvement would be to use the technique

3 gnus is the name of the software used to access Usenet.
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Table 16.3. Word-error rate with
interpolated real training data.

Model WER (%)
gnus (40K words) 30.19
swb (1.5M words) 18.88
FabPhrase 14.66
gnus+swb 14.76
swhb+FabPhrase 11.57
gnus+FabPhrase 10.79
gnus+swb+FabPhrase 10.41
gnuswb.median+FabPhrase 10.17

proposed at the end of Section 16.2 to build a seed model.

16.4 Unsupervised Language Model Adaptation

When there is not enough domain-specific data, a possible solutiorpiert

form unsupervised adaptation of the language model. In unsupervised adap-
tation, the language model is reestimated on in-domain speech data without
human transcriptions, using a recogniser to obtain automatic, albedtfeqp,
transcriptions.

We thought it would be interesting to attempt to do this using thesgvb.me-
dian+FabPhrase LM from the previous section; recall that this languadelmo
was trained entirely on non domain-specific data, with the phrase grammar as
its only domain-specific knowledge. To investigate dependence on the quan
tity of adaptation data used, we selected the 1994 DARPA ATIS male devel-
opment (d1994m) and 1993 DARPA ATIS male evaluation test sets (€1)993m
as adaptation, in addition to the 1994 DARPA ATIS male evaluation tdst s
(e1994m). A first recognition pass on €1994m, d1994m, and e1993m was per
formed to obtain automatic transcriptions for the three data seter Afis,
the three automatically transcribed data sets, hyp-e1994m, hyp-e1888m,
hyp-d1994m, were incrementally merged to form three adaptation data sets,
hyp-e1994m, hyp-(€1994m+e1993m) and hyp-(e1994m+e1993m+d1994m),
with 4654, 9210 and 13541 words, respectively. These were then used to
build three models for adaptation. All three models were interpolatédtivge
gnuswb.median+FabPhrase model, using a weight of 0.9 for the thréelsno
created from adaptation data. Three new recognition systems with the three
corresponding unsupervised adapted models were tested on €1994m data.

The results are shown in Tab. 16.4. The best version, hyp-(e199493m19
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Table 16.4. Word-error rate with
unsupervised adaptation

Unsupervised Adapt. Data WER (%)
none 10.17
hyp-d1994m 9.08
hyp-€1994m 9.01
hyp-(€1994m+e1993m) 8.78
hyp-(€1994m+e1993m+d1994m) 8.76

+d1994m), displays a 13.9% relative improvement over the baselinensys
using 13541 words of unsupervised adaptation data. With less than 5000
words of unsupervised adaptation data, whether on the same data set (hyp-
€1994m) or another data source (hyp-d1994m), we still obtained thare

10% relative improvement. However, additional iterations of unsupedv
adaptation did not improve the recognition performance.

Our significant improvements in word-error rates can be explained by two
reasons. First, the baseline system incorporates a variety of grammadical i
stances from the phrase grammar and selected data, and, although the-distribu
tion of the fabricated data is distorted, this LM is a satisfactoryistagoint.
Second, this relatively low word-error rate baseline system is usedsimpen-
vised mode to create reliable hypotheses, which are weighted heavilygdurin
unsupervised adaptation.

16.5 Class-Based Language Models

There are two extreme sets of approaches in language modelling. The first i
to model flat word strings using statistical n-gram, techniques, witbon-
sidering the internal structure of sentences. This approach has the ferit o
simplicity: it is easy to implement, and it is easy to train robust mod@ls
the other hand, because it does not take internal structure into conigsiderat
it will either not model long-distance dependencies wheis small, or we
will face a data-sparseness problem wheis big. The second approach is to
model whole sentence structures. This approach has the merit of predision:
provides detailed information and improves predictability. It doesydwer,
suffer from a severe data-sparseness problem, making it very hard teuciin
models.

As a compromise approach, class-based n-gram language modelling has
been a very successful technique that can be used when the amount of available
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Table 16.5. Word-error rates of word
bigramsvs. class bigrams with respect to
different amounts of data in English ATIS

LM Training (words) WER (%)
word 220000 7.02
word 150 000 7.38
word 100000 7.73
word 50000 8.26
class 220000 6.91
class 150000 7.10
class 100000 7.40
class 50000 7.40
word+class 220000 6.37
word+class 100000 7.10
word+class 50000 7.21

data is limited (Brown et al. 1992). A more flexible approach, which vite w
talk about later in this section, is to model important phrases in a sentence.
our SLT work, we implemented a class-based bigram LM and tested it with
our English and Swedish ATIS systems.

The class-based bigram LM is defined as:

P(wz |w1): Z P(Cz |Cl)*P(w2 |Cz),
(01,02),wh€7‘€ w2€C2,w1 €C1

where(Cy, C» are the classes of words, , wz, respectively. Notice that the
class-based bigram LM is essentially an HMM (see Chapter 14) with the state-
transition probability being the class bigraf(C- | C1)) and the output dis-
tribution being the class-membership distributid({- | Cz)). In our exper-
iments, the English classes were created manually; they include city names,
airlines, airline codes, and so on. The Swedish classes were manually trans-
lated from English ones with some minor modifications.

Tab. 16.5 lists the recognition word-error rates for the EnglishiSASys-
tem with different amounts of language-modelling training data, usioglw
bigram (vord), class-bigramdass), and interpolatedword+class) language
models. The test set was again the 1994 DARPA benchmark evaluation male
data.

The results of Tab. 16.5 show that with larger amounts of training data
(220000 words), pure class-based bigram LMs perform as well as wgrdrbi
LMs, while with small amounts of training data (50000 to 100 000ds),
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Table 16.6. Perplexities
of word-bigram model,
class-bigrammodel, and
interpolated models for
English, with OOV rate
being 0.1%

Perplexity
word 33.0
class 254
word+class 24.6

Table 16.7. Wobrd-error rates and
perplexity of word-bigram model,
class-bigram model, and interpolated
models for Swedish on 444 sentences

(3758 words)
WER (%) Perplexity
Baseline 7.90 40.260
class 8.01 22.208
word+class 7.64 20.715

pure class-based bigram LMs outperform word-bigram LMs significamtig
interpolated word-bigram and class-bigram systems gave furtheruement
over the pure class-bigram systems. The results also show thatehgoilatted
systems perform as well as the word-bigram systems that are traineawei¢h t
as much data. Compared with existing recognisers that have word-bidriam L
trained with large amounts of data, the new English system with classdb
bigram LMs mixed with word bigram LMs reduced the WER from 7.02% to
6.37% on a test set of 4 660 words, a significant improvement. Thegxéspl
improvements of the class-based and interpolated LMs over the worarbigr
LM using the 220000 words of training data are consistent with thw&verror
rate reductions (see Tab. 16.6).

We repeated a subset of experiments on our Swedish system, and obtained
slightly better perplexity reduction, but only slight word-errate reduction
(see Tab. 16.7). This difference is probably due to the limited vditiabf our
Swedish test set.

Class n-gram LMs allow convenient combination of hand-coded linguistic
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knowledge (in the form of class definitions) with statistical parametaised

from data (the class n-gram probabilities). In structuralist ternassebased

LMs improve generalisation along tiparadigmatic dimension: substitutions

of known words into contexts they haven't been previously obseirvedn

the remainder of this section we will investigate a way to improve treeg
alisation of n-gram models along tlsgntagmatic dimension, by inferring n-
grams that were not observed in training, but are plausible given tervdd
ones. While the technique can be applied to word- or class n-grams, it makes
most sense in combination with class n-grams, leveraging the genéoalisat
afforded by the word classes.

At the core of our technique for n-gram generalisation is an algoritfatn th
was orignally developed for compressing word lattices generated by speech
recognizers (Weng, Stolcke, and Sankar 1998). The idea is to merge nodes in
a lattice based on shared left or right contexts. Nodes with identicalgeliar
overlapping contexts are inferred to be instances of the same undegigimg
matical context and combined, resulting in a more compact representatien. Th
version of the algorithm that considers right contexts is given below

Backward lattice reduction algorithm  Let.S,,:(n) be the set of successor
nodes of node. Letword(n) denote the word name of lattice node

For each lattice node in reverse topological order (starting with the final
node):

e for each pair of predecessor nodésj) of noden:

. . . Sout(1)NSout (7
— if word(i) = word(j) and ||m|i|n {50(22)’50532‘].‘)}“ > Toin

. . Sout (8)NSout (J
(or, word(i) = word(j) andy, mlx{sfilTi),Soiz)(g)}ll > Tmaz)s

then merge nodeisandj.

In the algorithm,r,,;, andr,,.. are context overlap ratios to be adjusted
empirically. Settingr,,in, = 1 (Or, rmqee = 1) forces the two outgoing node
sets to be the same; this variant is called ¢kact reduction algorithm, and
would preserve the set of strings represented by the lattice, i.e., gigemner-
alisation. Whemr,,,;,, < 10rr,,.. < 1, the algorithm generalises the coverage
of the lattice by allowing additional transitions. For example, befibie re-
duction process, as shown in Figure 16.1a, word seaus not in the lattice;
after the reduction process (Figure 16.1b), the word st#algs included. The
decision to include word stringad in the lattice relies on the overlap of the
existing word strings. In our example, word stringsab... and...fab... overlap
afterab, and word strings..fab... and...fad... overlap beforda. Therefore, it
is reasonable to assume thagad... is a valid string. Intuitively, the reliability
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a) Bigram lattice before b) Bigram lattice after
approximate reduction. approximate reduction.

figure 16.1. lllustration of the reduction algorithm.

of the new word string(s) correlates with the overlap ratios. Thadrighe
proportion of overlap between two sets of strings, the more confidertan
be that the new word string(s) are grammatical.

Instead of testing the overlap ratios of the outgoing node sets,ghathim
can be executed equally well by requiring minimal overlap ratios for two in-
coming node sets. This gives the forward version of the reductiomitigo
Forward and backward versions can be performed several times in alternation
to locate new merging opportunities created by the respective other pracess
direction.

We can embed the lattice reduction algorithm in a new algorithm that gener-
alises word-class sequences obtained from a training corpus. The generalised
lattice representation is used to generate a new set of n-grams (includiag o
not observed in training), from which a new n-gram LM can be constructed.
As a final tuning step, we interpolate the resulting n-gram modeltwéhword
n-gram model obtained directly from our original training data. Thisnteu
acts possible overgeneralisation and ensures that the overall model iss® wo
than the standard word-based LM. The complete procedure is as follows:

Class n-gram generalisation algorithm:

1. Automatically tag the training data with a (hand-written) class oagh
grammar. This yields a new training corpus in which defined words and
phrases have been replaced with class names. Where multiple tag sequences
are possible, select the one that replaces the largest number of words with
class/phrase tags.

2. Combine the tagged training sentences in parallel, so as to form a large
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lattice of disjoint paths, sharing only the same initial and final nodes
. Apply the lattice reduction algorithm to the lattice thus constdct
4. Generate a large sample of word sequences from the reduced lattice, by
combining random walks through the lattice with randomly generated wor
sequences for the class labels encountered.
5. Train a word n-gram LM from the artificial sentence sample.

w

We tested this algorithm using a small set of training sentences from the
English ATIS corpus, comprising about 20 000 words; the test setagalse-
fore, the 1994 DARPA male evaluation data. Classes of words and phrases
were predefined by a hand-written finite state grammar consisting of about
144 nonterminals and approximately 4 000 rules. The majority of tes de-
fined proper name classes, such as city and airport names, with some additional
classes for numbers, dates and similar productive phrase types. Artamipor
difference to the previous experiments with class-based LMs was thesionl
of the latter types of classes, which generate an infinite set of word sequences.

Both the approximate (generalising) and the exact lattice reduction algo-
rithms were applied to the lattice built from this data. The overlap thtiesh-
old for generalisings(,,;,,) was 0.5, i.e., if lattice nodes shared more than half
their predecessors or successors they were considered mergeable. The exact
approach gives us a baseline with which to compare the effect of generalisa-
tion. Since the set of word and class n-grams is not generalised, théesresul
should be comparable to that of a standard class n-gram LM in this case. To
build the generalised n-gram model we generated random sentences from the
lattice, totalling about 1500000 words. Finally, the generalisedamgrM
was interpolated with a standard word n-gram model trained from the same
original 20 000 word corpus.

The interpolation weight was set in a jack-knifing procedure: the data was
first splitin two halves, the algorithm was executed separately on each Half, an
the interpolation weights optimised on the respective other half {hinmsing
perplexity). The algorithm was then run on the full training datanaishe
average of the two previously optimised interpolation weights.

Tab. 16.8 shows the results obtained, for both bigram and trigram LMs
For comparison, the performance of various previously discussediained
on the same amount of data are also given: the simple word-based LM, the
interpolated class-based LM (as described earlier in this section) and the inter
polated LM based on fabricated data (see Section 16.2).

We see that the lattice-based models perform well compared to all the base-
line models, especially for the trigram case. The bigram LM using fabricated
data performs somewhat better than the other bigram LMs, but it sheuld
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Table 16.8. Results of generalized n-gram
LMs and various baseline models, trained on
20000 words of ATIS data.

WER (%)
Model Bigram  Trigram
Word n-gram 7.81 7.96
Word+Class n-gram 7.51 7.12
Word+FabSentence 7.10 6.82
Word+Exact lattice 7.38 6.57
Word+Generalized lattice 7.40 6.46

noted that that model makes crucial use of a hand-written phrase grammar and
is thus not directly comparable. Compared to the class-based LM, the model
generated from the exact lattice shows some improvement, which can be at-
tributed to the more productive phrase-class definitions. Finallyhe trigram
case, we see an additional improvement over the exact-lattice approach, which
we attribute to the generalising effect of the approximate lattice remucti

While the observed improvements remain small, we see the class-based
n-gram generalizaion technique presented here as a promising new toel to im
prove LMs trained from very little raw training data. Future worll\wave to
address additional research questions and potential improvements. These in
clude the question of how to find optimal parameters to control the géseeral
tion algorithm, and how to best combine the method with the other igobs
presented in this chapter.

16.6 Multilingual Language Modelling

In today’s world, a significant number of people speak multiple langsiag
and code switching is becoming more pervasive. Code switching is used to
refer to situations where people switch languages within sentences. This can
be a very frequent phenomenon in multilingual systems like SLT. Bedgi
growing significance, code switching is not well studied in languageatting
and speech recognition. We have carried out some initial investigatidhis o
problem in the context of our Swedish/English bilingual recognitystem
(Weng et al. 1997). We discuss the acoustic modelling aspects of myuil
systems in Chapter 18. In this section we present two LM approaches that were
tested in the bilingual recogniser.

The first approach pools together the Swedish language model dataevith th
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Swedish Sub-grammar

English Sub-grammar

figure 16.2. lllustration of the constrained LM.

English one. A bigram language model (callddred LM) was built on the
pooled data. Because there are no code-switching instances in the traiaing dat
Swedish words can only be followed by Swedish words and Englishsxaad
only be followed by English words. Transitions between the wofdsetwo
languages in the bigram language model can however still be realisedtthroug
its backoff node: in bigram language models, probabilities for word pairs that
have no (or very few) occurences in the training data are approximated by
appropriate weighting of the unigram probabilities, and this can baesftly
implemented through a backoff node (Katz 1987).

A second approach usescanstrained LM that does not allow any transi-
tion between the two languages, except in the initial state (Figurg. Mg2en
tested on English data, the recognition system with the constraineddrM p
forms almost the same as the one with the shared LM. However, when tested
on Swedish data, the constrained LM performs significantly better than the
shared LM. More details about these experiments, including differpastpf
acoustic models, can be found in Chapter 18.

The above approaches represent two extremes: one allows transitions at
any time, and the other allows no transitions at all. Motivated by thidyst
and our work on phrase-based LMs, we plan to pursue approaches that ex-
ploit some of the advantages of the extreme positions withoutitnpall of
their weaknesses. One possibility is to allow proper names to be swigchab
among different languages. Among others, these proper names wouldeinclud
personal names, location names (cities, airports, etc.), and names of compa-
nies and products. A more flexible and generic approach is to allow language
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switching between phrases, which can be done using the phrase-based lan-
guage modelling techniques discussed in Section 16.5. Unfortunateigtih

it is difficult to evaluate these approaches empirically without a nindilal
corpus that includes code-switching phenomena. We see collection of such a
corpus as an important task for future work.

16.7 Conclusions

In specialised application domains and in multilingual environmentsnas i
SLT, acquiring a corpus to train the language model is a serious taslkimy

non trivial design problems, as we saw in Chapter 8. In many practicatappli
tions, we are faced with the problem of building a language model Uitiieg

or no training data. For a multilingual environment, additionaléssisuch as

code switching, need to be properly addressed. These have been the main foci
of our language modelling effort in SLT.

We dealt with the first problem in a number of different ways, including
(1) various applications of hand-written phrase grammars, such as fabricat
ing domain-specific data and class-based n-gram generalisation; (2) astomati
extraction and selection of relevant phrasal components from readily avail-
able data for training; and (3) unsupervised adaptation of the languadel m
Some of the approaches have led to very encouraging results. Othersmlso sh
certain promise, or point to new directions.

With regard to multilinguality, we examined different issues in¢bastruc-
tion of multilingual language models for our recognition systemmeppsed
and experimented with a few different approaches, and obtained interesting
results, especially for code-switching phenomena.

We hope that our continuing LM research effort in SLT contributes to the
maturity of speech technology and its increasing application to multiihg
interaction in the world.



