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16.1 Introduction

As we saw in Chapter 14, the speech recognition problem can be formulated
as the search for the best hypothesised word sequence given an input feature
sequence. The search is based on probabilistic models trained on many utter-
ances: W = argmaxW P (X j W )P (W )

In the equation above,P (X j W ) is called the acoustic model, andP (W )
is called the language model (LM).

In this chapter we present several techniques that were used to develop lan-
guage models for the speech recognisers in the SLT system. The algorithms
presented here deal with two main issues: the data-sparseness problem and the
development of language models for multilingual recognisers.

As with acoustic modelling, sparse training data is one of the main prob-
lems in language modelling tasks. In both cases, we ideally want to have
enough properly matched data to train models for all the necessary conditions.
One may think that today’s technology, especially the Internet and the World
Wide Web, lets us take for granted the availability of any amount of language
modelling training data. Unfortunately, this is not entirely true, for three rea-
sons:

Style mismatch: Internet-derived data is usually written text, which does not
have the same style as spoken material.

Language mismatch: The available texts are not uniformly distributed with
respect to different languages: there is plenty of data available for English,
but not for other languages.
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Domain mismatch: The texts are not specifically organized for any speech
recognition task.

Ignoring these mismatches can cause significant degradation to the perfor-
mance of speech recognition systems. On the other hand, fully satisfyingthem
may introduce data-sparseness problems.

For these reasons, we want to investigate various ways that allow us to
rapidly collect proper amounts of data for new domains and new languages,
and to train compact language models with high performance. Since human
beings are the ultimate producers and consumers of human languages, it is
also desirable to leverage the strength of symbolic approaches for statistical
language modelling.

We have experimented with several approaches aimed at tackling the data-
sparseness problem. In the following sections, we will present data-fabrication
techniques, data-retrieval techniques, class-based n-gram approaches and class-
based n-gram generalisation algorithms. We will also present our methodsand
experiments for handling multilingual language modelling.

In the interests of making the chapter self-contained, we briefly summarise
a couple of key technical ideas. One very common type of LM is thestatistical
n-gram language model; this is an(n � 1)th order Markov model, where the
probability of one word in the sentence depends on then� 1 previous words.n is most often equal to 2, resulting in thebigram language model. In a bigram
LM, the probability of one wordwn in the sentence, given the history of all
previous wordsw1; w2; : : : ; wn�1, depends only on the previous word:p(wnjw1; w2; : : : ; wn�1) = p(wnjwn�1):

LMs are also frequently constructed by use of interpolation. An interpo-
lated language model computes the probability of a wordw, given the history
of previous words (or word classes)H , as a linear combination of the proba-
bilities given by two or more language models. In the case of two models, A
andB, this probability can be expressed asp(wjH) = � � pA(wjH) + (1� �) � pB(wjH);
wherepA(wjH); pB(wjH) are the two language models and� is the interpo-
lation weight between 0 and 1. Notice that� can also be a function ofH .
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Table 16.1. Word-error rate with fabricated
LM training data

System Training data WER (%)
Baseline 220 000 words 5.73
No LM 0 39.10
FabPhrase 1 300 000 words 14.66
FabSentence 1 500 000 words 12.49

16.2 Fabricating Domain-Specific Data

The data-sparseness problem for language-model training can be alleviated us-
ing grammars written by human language experts. It is well known that itis
difficult to write a full-sentence grammar for a general domain, or even for a
limited domain. However, our experience has shown that it is quite reasonable
to assume that a grammarian can write a phrase grammar for a limited domain
within a few weeks. The key advantage of a phrase grammar is that it can cap-
ture almost all the necessary information needed for the domain without having
to exhaustively consider all the possible phrase combinations. For example, in
the ATIS domain, it is quite easy to write down the most frequently used ex-
pressions for dates, times, costs, locations, transportation, meals, and arrival
and departure events. Because phrase subgrammars are modular (Weng and
Stolcke 1995), many expressions, such as dates, times, locations, and numbers,
can be used across different domains. Therefore, moving into a new domain is
even easier after phrase grammars have been written for some initial domains.

There are two potential ways to apply phrase grammars for language mod-
elling. One is to use phrase grammars to generate random phrases and to train
statistical language models, that is, tofabricate domain-specific data. The
other is to embed phrase subgrammars in statistical language models, in a way
similar to class-based language modelling. We will discuss in detail thesecond
approach in Section 16.5.

We conducted a set of initial experiments in 1995, when we first took an
English phrase grammar adapted from SRI’s ATIS template matcher system
(Jackson et al. 1991). This phrase grammar uses a vocabulary of 1 750 words,
and about 200 non-terminals with approximately 3 600 rules. The majority of
the rules are simply names (city names, airport names, etc.) with indicative
words, such as prepositionfrom for departure location andto for destination.

The SRI 1994 ATIS speech recognition benchmark system (Cohen, Rivlin,
and Bratt 1995) was adapted for our real time SLT task. The resulting baseline
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Table 16.2. Word-error rate with interpolated real
training data

Real Data Interpolated LM Real Data Only LM
(# Words) Weight WER (%) WER (%)
0 0.0 12.49 39.10
10 000 .9 7.75 9.14
20 000 .97 7.10 7.81
30 000 .97 6.65 7.12
40 000 .97 6.52 7.10
50 000 .95 6.27 6.89
100 000 .92 5.86 6.12
220 000 .97 5.69 5.73

speech recogniser has 5.73% word error rate with a bigram language model
trained on 220 000 words of ATIS domain data1. Tab. 16.1 contrasts perfor-
mance of this LM with bigram LMs trained on two artificial corpora. The first
of these (FabPhrase) consisted of 300 000 phrases (1.3 million words)ran-
domly generated using the phrase grammar. The second (FabSentence) has
100 000 fabricated sentences (1.5 million words) with in-vocabulary words
randomly inserted in between the phrases. For completeness, we also con-
ducted a set of experiments that linearly interpolated the FabSentence model
with the models trained on different amounts of real data. The results are pre-
sented in Tab. 16.2.

Without using any real training data, the LM trained on 100 000 fabricated
sentences led to an almost usable speech recogniser, which we found quite
encouraging. A refinement, which we hope to investigate in the future, isto
incorporate phrase tags in the tag set of the corpus. This could then be used
to create a statistical n-gram tag model which in turn would be used to fabri-
cate sentences. The idea is related to the class n-gram generalisation approach
discussed in Section 16.5.

16.3 Better Use of Domain-General Data

Successful statistical language modelling requires large amounts of domain-
specific data, which are not always available. As discussed above, direct use
of widely available domain-general data often leads to unsatisfactory results,

1 All the experiments in this section were carried out on the 1994 DARPA benchmark evaluation
male test set, which contains 443 sentences and a total of 4 660 words.
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due to vocabulary and style mismatches. One straightforward way to attack
the problem (Iyer, Ostendorf, and Rohlicek 1994) is to interpolate an n-gram
LM trained on small amounts of available domain-specific data with another
n-gram LM trained on large amounts of domain-general data. By adjusting the
weight of the domain-specific LM to a high value, one can reduce the effect of
the mismatches in training data, but at the same time inherit robustnessfrom
the general LM.

By interpolating a domain-specific n-gram LM with a general n-gram LM,
we utilise only local properties of the domain-general data, typically counts for
bigram LMs. However, many of these local counts are irrelevant both to the
domain and to the global constraints of the language. Including them therefore
serves no useful purpose, and only degrades the quality of the LM. Instead
of extracting n-gram counts directly from domain-general data, an alternative
approach is to start by attempting to identify a subset of the general data related
to the domain we are interested in, and extract counts only from that.

One of the assumptions of this approach is that so-called general data really
consists of a mixture of data from many different specific domains. A strand
of research in traditional Artificial Intelligence (AI) has for a long timeadvo-
cated a script-based approach to language understanding (Schank and Abelson
1977), based on the assumption that shared human knowledge is organized in
the form of scripts: routine procedures that people perform for different tasks
and have an organisation that is well reflected in language. They are possibly
related to the concept of domain organisation. Interestingly, our observations
have several points of contact with script-based research.

With these ideas in mind, we designed a set of experiments in 1995. We
selected some relevant news articles from Usenet news groups and the Switch-
board corpus2 LM data to conduct the experiments. To filter these corpora
and retrieve relevant data, a distance measure was required. Adopted from
information theory, perplexity is commonly used in language modelling as a
measure of the fit between model and data. It is defined as:Perplexity = 2�Px2VT p0(x)�log p(x);
wherep(x) is the probabilistic distribution of the model,p0(x) is the estimated
probability from text dataT , andVT is the vocabulary ofT . The lower the
perplexity number, the better the model fits the data. Here, we use it as a
distance measure for selecting sentences that are close to a given seed model.

2 The Switchboard corpus is a conversational speech databasecollected over the telephone that
includes a variety of conversation topics.
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We first took articles from Usenet rec.travel.* news groups covering May
and August of 1995, using the FabPhrase model from Section 16.2 as theseed
model. Because many words in the general data were out of domain vocabulary
(OOV), we only obtained 1 700 sentence fragments or chunks (as opposed to
full sentences) totaling 11 000 words. We also tried using the Switchboard
corpus as the domain-general data, hoping that the conversational styles and
travel topics captured by that data could be helpful for the ATIS domain.The
filtering process on Switchboard data yielded about 85 000 chunks, totaling
288 000 words. Two language models, which we will callgnus3 andswb, were
built using the two data sets just described.

We performed conventional interpolation of the models as baselines. As we
can see in Tab. 16.3, the interpolated models gnus+FabPhrase and swb+FabPhrase
both produce significant improvements over all the three individual models,
and in particular over the FabPhrase model. We also combined all three lan-
guage models (gnus+swb+FabPhrase) obtaining a further small improvement.
All the recognition results are listed in Tab. 16.3.

These results show that using general-domain data can significantly im-
prove an in-domain model. We also experimented with selective usage of
general-domain data. A language model was built, that weighted more heavily
(0.9) the low perplexity fragments from the general-domain (Switchboard and
gnus) data extracted using the FabPhrase model: we called itgnuswb.median.
This LM was then interpolated with the fabricated data to yield yet another
model, gnuswb.median+FabPhrase. The gain from selective usage of general-
domain data was smaller than expected, and we attribute this largely to our
simplistic use of perplexity as a distance measure for retrieving relevant sen-
tence fragments. For example, chunks ending with “the”, such as “I was just
wondering if the”, and “when checking into the originating flight and the”, are
quite frequent, and this distorts the perplexity of relevant phrasesin the gen-
eral data that end with “the”. Hence, some preprocessing is required in order
to make this distance measure more effective. Alternative distance measures
also need to be investigated, including labeling sentences with phrase gram-
mars and preferring ones with high phrase label coverage. Another possible
reason for this smaller-than-expected gain can be the fabricated seed model,
FabPhrase. As explained before, FabPhrase is trained on randomly generated
phrases from the phrase grammar. Therefore, this model does not fully reflect
the real probabilistic distribution of any real in-domain data, especially in the
case of phrase boundaries. An improvement would be to use the technique

3 gnus is the name of the software used to access Usenet.
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Table 16.3. Word-error rate with
interpolated real training data.

Model WER (%)
gnus (40K words) 30.19
swb (1.5M words) 18.88
FabPhrase 14.66
gnus+swb 14.76
swb+FabPhrase 11.57
gnus+FabPhrase 10.79
gnus+swb+FabPhrase 10.41
gnuswb.median+FabPhrase 10.17

proposed at the end of Section 16.2 to build a seed model.

16.4 Unsupervised Language Model Adaptation

When there is not enough domain-specific data, a possible solution is to per-
form unsupervised adaptation of the language model. In unsupervised adap-
tation, the language model is reestimated on in-domain speech data without
human transcriptions, using a recogniser to obtain automatic, albeit imperfect,
transcriptions.

We thought it would be interesting to attempt to do this using the gnuswb.me-
dian+FabPhrase LM from the previous section; recall that this language model
was trained entirely on non domain-specific data, with the phrase grammar as
its only domain-specific knowledge. To investigate dependence on the quan-
tity of adaptation data used, we selected the 1994 DARPA ATIS male devel-
opment (d1994m) and 1993 DARPA ATIS male evaluation test sets (e1993m)
as adaptation, in addition to the 1994 DARPA ATIS male evaluation test set
(e1994m). A first recognition pass on e1994m, d1994m, and e1993m was per-
formed to obtain automatic transcriptions for the three data sets. After this,
the three automatically transcribed data sets, hyp-e1994m, hyp-e1993m,and
hyp-d1994m, were incrementally merged to form three adaptation data sets,
hyp-e1994m, hyp-(e1994m+e1993m) and hyp-(e1994m+e1993m+d1994m),
with 4 654, 9 210 and 13 541 words, respectively. These were then used to
build three models for adaptation. All three models were interpolated with the
gnuswb.median+FabPhrase model, using a weight of 0.9 for the three models
created from adaptation data. Three new recognition systems with the three
corresponding unsupervised adapted models were tested on e1994m data.

The results are shown in Tab. 16.4. The best version, hyp-(e1994m+e1993m-
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Table 16.4. Word-error rate with
unsupervised adaptation

Unsupervised Adapt. Data WER (%)
none 10.17
hyp-d1994m 9.08
hyp-e1994m 9.01
hyp-(e1994m+e1993m) 8.78
hyp-(e1994m+e1993m+d1994m) 8.76

+d1994m), displays a 13.9% relative improvement over the baseline system,
using 13 541 words of unsupervised adaptation data. With less than 5 000
words of unsupervised adaptation data, whether on the same data set (hyp-
e1994m) or another data source (hyp-d1994m), we still obtained morethan
10% relative improvement. However, additional iterations of unsupervised
adaptation did not improve the recognition performance.

Our significant improvements in word-error rates can be explained by two
reasons. First, the baseline system incorporates a variety of grammatical in-
stances from the phrase grammar and selected data, and, although the distribu-
tion of the fabricated data is distorted, this LM is a satisfactory starting point.
Second, this relatively low word-error rate baseline system is used in unsuper-
vised mode to create reliable hypotheses, which are weighted heavily during
unsupervised adaptation.

16.5 Class-Based Language Models

There are two extreme sets of approaches in language modelling. The first is
to model flat word strings using statistical n-gram, techniques, without con-
sidering the internal structure of sentences. This approach has the merit of
simplicity: it is easy to implement, and it is easy to train robust models. On
the other hand, because it does not take internal structure into consideration,
it will either not model long-distance dependencies whenn is small, or we
will face a data-sparseness problem whenn is big. The second approach is to
model whole sentence structures. This approach has the merit of precision:it
provides detailed information and improves predictability. It does, however,
suffer from a severe data-sparseness problem, making it very hard to trainsuch
models.

As a compromise approach, class-based n-gram language modelling has
been a very successful technique that can be used when the amount of available
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Table 16.5. Word-error rates of word
bigrams vs. class bigrams with respect to
different amounts of data in English ATIS

LM Training (words) WER (%)
word 220 000 7.02
word 150 000 7.38
word 100 000 7.73
word 50 000 8.26
class 220 000 6.91
class 150 000 7.10
class 100 000 7.40
class 50 000 7.40
word+class 220 000 6.37
word+class 100 000 7.10
word+class 50 000 7.21

data is limited (Brown et al. 1992). A more flexible approach, which we will
talk about later in this section, is to model important phrases in a sentence.In
our SLT work, we implemented a class-based bigram LM and tested it with
our English and Swedish ATIS systems.

The class-based bigram LM is defined as:P (w2 j w1) = X(C1;C2);where w22C2;w12C1 P (C2 j C1) � P (w2 j C2);
whereC1; C2 are the classes of wordsw1; w2, respectively. Notice that the
class-based bigram LM is essentially an HMM (see Chapter 14) with the state-
transition probability being the class bigram (P (C2 j C1)) and the output dis-
tribution being the class-membership distribution (P (w2 j C2)). In our exper-
iments, the English classes were created manually; they include city names,
airlines, airline codes, and so on. The Swedish classes were manually trans-
lated from English ones with some minor modifications.

Tab. 16.5 lists the recognition word-error rates for the English ATIS sys-
tem with different amounts of language-modelling training data, using word-
bigram (word), class-bigram (class), and interpolated (word+class) language
models. The test set was again the 1994 DARPA benchmark evaluation male
data.

The results of Tab. 16.5 show that with larger amounts of training data
(220 000 words), pure class-based bigram LMs perform as well as word-bigram
LMs, while with small amounts of training data (50 000 to 100 000 words),
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Table 16.6. Perplexities
of word-bigram model,

class-bigram model, and
interpolated models for
English, with OOV rate

being 0.1%

Perplexity
word 33.0
class 25.4
word+class 24.6

Table 16.7. Word-error rates and
perplexity of word-bigram model,

class-bigram model, and interpolated
models for Swedish on 444 sentences

(3 758 words)

WER (%) Perplexity
Baseline 7.90 40.260
class 8.01 22.208
word+class 7.64 20.715

pure class-based bigram LMs outperform word-bigram LMs significantly. The
interpolated word-bigram and class-bigram systems gave further improvement
over the pure class-bigram systems. The results also show that the interpolated
systems perform as well as the word-bigram systems that are trained with twice
as much data. Compared with existing recognisers that have word-bigram LMs
trained with large amounts of data, the new English system with class-based
bigram LMs mixed with word bigram LMs reduced the WER from 7.02% to
6.37% on a test set of 4 660 words, a significant improvement. The perplexity
improvements of the class-based and interpolated LMs over the word-bigram
LM using the 220 000 words of training data are consistent with the word-error
rate reductions (see Tab. 16.6).

We repeated a subset of experiments on our Swedish system, and obtained
slightly better perplexity reduction, but only slight word-errorrate reduction
(see Tab. 16.7). This difference is probably due to the limited variability of our
Swedish test set.

Class n-gram LMs allow convenient combination of hand-coded linguistic
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knowledge (in the form of class definitions) with statistical parameterstrained
from data (the class n-gram probabilities). In structuralist terms, class-based
LMs improve generalisation along theparadigmatic dimension: substitutions
of known words into contexts they haven’t been previously observedin. In
the remainder of this section we will investigate a way to improve the gener-
alisation of n-gram models along thesyntagmatic dimension, by inferring n-
grams that were not observed in training, but are plausible given the observed
ones. While the technique can be applied to word- or class n-grams, it makes
most sense in combination with class n-grams, leveraging the generalisation
afforded by the word classes.

At the core of our technique for n-gram generalisation is an algorithm that
was orignally developed for compressing word lattices generated by speech
recognizers (Weng, Stolcke, and Sankar 1998). The idea is to merge nodes in
a lattice based on shared left or right contexts. Nodes with identical or largely
overlapping contexts are inferred to be instances of the same underlyinggram-
matical context and combined, resulting in a more compact representation. The
version of the algorithm that considers right contexts is given below:

Backward lattice reduction algorithm LetSout(n) be the set of successor
nodes of noden. Letword(n) denote the word name of lattice noden.

For each lattice noden in reverse topological order (starting with the final
node):� for each pair of predecessor nodes(i; j) of noden:

– if word(i) = word(j) and kSout(i)\Sout(j)kkminfSout(i);Sout(j)gk � rmin
(or,word(i) = word(j) and kSout(i)\Sout(j)kkmaxfSout(i);Sout(j)gk � rmax),
then merge nodesi andj.

In the algorithm,rmin andrmax are context overlap ratios to be adjusted
empirically. Settingrmin = 1 (or, rmax = 1) forces the two outgoing node
sets to be the same; this variant is called theexact reduction algorithm, and
would preserve the set of strings represented by the lattice, i.e., give no gener-
alisation. Whenrmin < 1 or rmax < 1, the algorithm generalises the coverage
of the lattice by allowing additional transitions. For example, before the re-
duction process, as shown in Figure 16.1a, word stringead is not in the lattice;
after the reduction process (Figure 16.1b), the word stringead is included. The
decision to include word stringead in the lattice relies on the overlap of the
existing word strings. In our example, word strings...eab... and...fab... overlap
afterab, and word strings...fab... and...fad... overlap beforefa. Therefore, it
is reasonable to assume that...ead... is a valid string. Intuitively, the reliability
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figure 16.1. Illustration of the reduction algorithm.

of the new word string(s) correlates with the overlap ratios. The higher the
proportion of overlap between two sets of strings, the more confident we can
be that the new word string(s) are grammatical.

Instead of testing the overlap ratios of the outgoing node sets, the algorithm
can be executed equally well by requiring minimal overlap ratios for two in-
coming node sets. This gives the forward version of the reduction algorithm.
Forward and backward versions can be performed several times in alternation
to locate new merging opportunities created by the respective other processing
direction.

We can embed the lattice reduction algorithm in a new algorithm that gener-
alises word-class sequences obtained from a training corpus. The generalised
lattice representation is used to generate a new set of n-grams (including ones
not observed in training), from which a new n-gram LM can be constructed.
As a final tuning step, we interpolate the resulting n-gram model withthe word
n-gram model obtained directly from our original training data. This counter-
acts possible overgeneralisation and ensures that the overall model is no worse
than the standard word-based LM. The complete procedure is as follows:

Class n-gram generalisation algorithm:

1. Automatically tag the training data with a (hand-written) class or phrase
grammar. This yields a new training corpus in which defined words and
phrases have been replaced with class names. Where multiple tag sequences
are possible, select the one that replaces the largest number of words with
class/phrase tags.

2. Combine the tagged training sentences in parallel, so as to form a large
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lattice of disjoint paths, sharing only the same initial and final nodes.
3. Apply the lattice reduction algorithm to the lattice thus constructed.
4. Generate a large sample of word sequences from the reduced lattice, by

combining random walks through the lattice with randomly generated word
sequences for the class labels encountered.

5. Train a word n-gram LM from the artificial sentence sample.

We tested this algorithm using a small set of training sentences from the
English ATIS corpus, comprising about 20 000 words; the test set was, as be-
fore, the 1994 DARPA male evaluation data. Classes of words and phrases
were predefined by a hand-written finite state grammar consisting of about
144 nonterminals and approximately 4 000 rules. The majority of the rules de-
fined proper name classes, such as city and airport names, with some additional
classes for numbers, dates and similar productive phrase types. An important
difference to the previous experiments with class-based LMs was the inclusion
of the latter types of classes, which generate an infinite set of word sequences.

Both the approximate (generalising) and the exact lattice reduction algo-
rithms were applied to the lattice built from this data. The overlap ratio thresh-
old for generalising (rmin) was 0.5, i.e., if lattice nodes shared more than half
their predecessors or successors they were considered mergeable. The exact
approach gives us a baseline with which to compare the effect of generalisa-
tion. Since the set of word and class n-grams is not generalised, the results
should be comparable to that of a standard class n-gram LM in this case. To
build the generalised n-gram model we generated random sentences from the
lattice, totalling about 1 500 000 words. Finally, the generalised n-gram LM
was interpolated with a standard word n-gram model trained from the same
original 20 000 word corpus.

The interpolation weight was set in a jack-knifing procedure: the data was
first split in two halves, the algorithm was executed separately on each half, and
the interpolation weights optimised on the respective other half (by minimising
perplexity). The algorithm was then run on the full training data, using the
average of the two previously optimised interpolation weights.

Tab. 16.8 shows the results obtained, for both bigram and trigram LMs.
For comparison, the performance of various previously discussed LMstrained
on the same amount of data are also given: the simple word-based LM, the
interpolated class-based LM (as described earlier in this section) and the inter-
polated LM based on fabricated data (see Section 16.2).

We see that the lattice-based models perform well compared to all the base-
line models, especially for the trigram case. The bigram LM using fabricated
data performs somewhat better than the other bigram LMs, but it shouldbe
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Table 16.8. Results of generalized n-gram
LMs and various baseline models, trained on

20 000 words of ATIS data.

WER (%)
Model Bigram Trigram
Word n-gram 7.81 7.96
Word+Class n-gram 7.51 7.12
Word+FabSentence 7.10 6.82
Word+Exact lattice 7.38 6.57
Word+Generalized lattice 7.40 6.46

noted that that model makes crucial use of a hand-written phrase grammar and
is thus not directly comparable. Compared to the class-based LM, the model
generated from the exact lattice shows some improvement, which can be at-
tributed to the more productive phrase-class definitions. Finally, for the trigram
case, we see an additional improvement over the exact-lattice approach, which
we attribute to the generalising effect of the approximate lattice reduction.

While the observed improvements remain small, we see the class-based
n-gram generalizaion technique presented here as a promising new tool to im-
prove LMs trained from very little raw training data. Future work will have to
address additional research questions and potential improvements. These in-
clude the question of how to find optimal parameters to control the generalisa-
tion algorithm, and how to best combine the method with the other techniques
presented in this chapter.

16.6 Multilingual Language Modelling

In today’s world, a significant number of people speak multiple languages,
andcode switching is becoming more pervasive. Code switching is used to
refer to situations where people switch languages within sentences. This can
be a very frequent phenomenon in multilingual systems like SLT. Despite its
growing significance, code switching is not well studied in language modelling
and speech recognition. We have carried out some initial investigations of this
problem in the context of our Swedish/English bilingual recognition system
(Weng et al. 1997). We discuss the acoustic modelling aspects of multilingual
systems in Chapter 18. In this section we present two LM approaches that were
tested in the bilingual recogniser.

The first approach pools together the Swedish language model data with the
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Swedish Sub-grammar

English Sub-grammar

figure 16.2. Illustration of the constrained LM.

English one. A bigram language model (calledshared LM) was built on the
pooled data. Because there are no code-switching instances in the training data,
Swedish words can only be followed by Swedish words and English words can
only be followed by English words. Transitions between the words of the two
languages in the bigram language model can however still be realised through
its backoff node: in bigram language models, probabilities for word pairs that
have no (or very few) occurences in the training data are approximated by
appropriate weighting of the unigram probabilities, and this can be efficiently
implemented through a backoff node (Katz 1987).

A second approach uses aconstrained LM that does not allow any transi-
tion between the two languages, except in the initial state (Figure 16.2). When
tested on English data, the recognition system with the constrained LM per-
forms almost the same as the one with the shared LM. However, when tested
on Swedish data, the constrained LM performs significantly better than the
shared LM. More details about these experiments, including different types of
acoustic models, can be found in Chapter 18.

The above approaches represent two extremes: one allows transitions at
any time, and the other allows no transitions at all. Motivated by this study
and our work on phrase-based LMs, we plan to pursue approaches that ex-
ploit some of the advantages of the extreme positions without inheriting all of
their weaknesses. One possibility is to allow proper names to be switchable
among different languages. Among others, these proper names would include
personal names, location names (cities, airports, etc.), and names of compa-
nies and products. A more flexible and generic approach is to allow language
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switching between phrases, which can be done using the phrase-based lan-
guage modelling techniques discussed in Section 16.5. Unfortunately though,
it is difficult to evaluate these approaches empirically without a multilingual
corpus that includes code-switching phenomena. We see collection of such a
corpus as an important task for future work.

16.7 Conclusions

In specialised application domains and in multilingual environments, as in
SLT, acquiring a corpus to train the language model is a serious task involving
non trivial design problems, as we saw in Chapter 8. In many practical applica-
tions, we are faced with the problem of building a language model usinglittle
or no training data. For a multilingual environment, additional issues, such as
code switching, need to be properly addressed. These have been the main foci
of our language modelling effort in SLT.

We dealt with the first problem in a number of different ways, including:
(1) various applications of hand-written phrase grammars, such as fabricat-
ing domain-specific data and class-based n-gram generalisation; (2) automatic
extraction and selection of relevant phrasal components from readily avail-
able data for training; and (3) unsupervised adaptation of the language model.
Some of the approaches have led to very encouraging results. Others also show
certain promise, or point to new directions.

With regard to multilinguality, we examined different issues in theconstruc-
tion of multilingual language models for our recognition systems, proposed
and experimented with a few different approaches, and obtained interesting
results, especially for code-switching phenomena.

We hope that our continuing LM research effort in SLT contributes to the
maturity of speech technology and its increasing application to multilingual
interaction in the world.


