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ABSTRACT

We investigate a new approach for using speech prosody as a
knowledge source for speech recognition. The idea is to penal-
ize word hypotheses that are inconsistent with prosodic features
such as duration and pitch. To model the interaction between
words and prosody we modify the language model to represent
hidden events such as sentence boundaries and various formsof
disfluency, and combine with it decision trees that predict such
events from prosodic features. N-best rescoring experiments on
the Switchboard corpus show a small but consistent reduction
of word error as a result of this modeling. We conclude with a
preliminary analysis of the types of errors that are corrected by
the prosodically informed model.

1. INTRODUCTION

One source of information that currently is not being explicitly
modeled for large-vocabulary speech recognition is prosody: the
suprasegmental duration, pitch, and energy features of speech.
Prosodic cues have been used in automatic speech processing
systems for various tasks, such as lexical and syntactic disam-
biguation, dialog processing and speech understanding [11, 7,
among others]. Research on small- and medium-vocabulary rec-
ognizers have shown that prosodic cues can raise the rank of the
correct hypothesis [17, 16]. However, prosody is currentlynot
widely used in large-vocabulary word recognition.

One difficulty in leveraging prosody for word recognition is
that it correlates with linguistic structures that are mainly at or
above the word level; models based on local likelihoods (similar
to the standard acoustic models of today’s recognizers) areun-
suitable. Therefore, it seems more promising to leverage prosody
for word recognition in an indirect way: we model the higher-
level structures that manifest themselves prosodically, as well
as the relationship between these structures and the word se-
quence, and evaluate a word hypothesis based on the consistency
of all three components: words, structure, and prosody [16]. For
example, we might have a model of syntactic structure and its
prosodic manifestations, as well as a word language model in
terms of syntactic structure. Both together can be used to pe-
nalize hypotheses whose likely syntactic structure is inconsistent
with prosody, and to boost those that are consistent with it.

In this paper, we instantiate this idea, using linguistic structure
of a more rudimentary kind. Instead of full-fledged syntax, we
model the prosody and word sequences associated with sentence
boundaries and certain types of disfluencies (hesitations and self-
repairs). We refer to both types of phenomena ashidden events,
becausethey can be thoughtof as hidden pseudo-wordsoccurring
between the observable words. For example,

Right <S> I <REP>I don’t <DEL> uh<FP> I’m not
really sure: : :

shows a sentences boundary<S>, a disfluent repetition<REP>,
and a disfluent deletion (false start)<DEL> as tags at their re-
spective locations in the word stream. These are the kinds of
events we will model, both prosodically and lexically.

In the next section we formalize the general approach to lever-
aging prosody via linguistic structure. Section 3 elaborates on
the modeling of hidden events and how they can be fit into the
framework. Section 4 presents some preliminary experiments,
analyses,and examples of corrected recognition errors. Section 5
discusses further work and Section 6 concludes.

2. MODELING APPROACH

Before going into the specifics of hidden-event modeling, we
can formulate the approach outlined in the Introduction in formal
terms. We will denote word sequences withW , the associated
standard acoustic features withA, and any prosodic features withF . Given an acoustic manifestation,a standard speech recognizer
searches for the word sequence with highest posterior probability,
which can be estimated using a word language modelP (W ) and
an acoustic likelihood modelP (AjW ) [1]:W � = argmaxW P (W jA)= argmaxW P (W )P (AjW )P (A)= argmaxW P (W )P (AjW ) (1)

Now let us assume that, in order to leverage prosody, we
ascribe a structureS to the word sequenceW . S could be a
parse tree, or, in our case, a representation of the hidden events
(sentence boundaries, disfluencies) embedded inW . We also
assume that we have a model for the relation between words,
prosody, and structure, i.e.,P (W;S;F ). Again, the motivation
forS is that it is easier to modelP (W;S;F ) than a direct relationP (W;F ) between words and prosody. The details of this model
are unimportant for now. We can revise Equation 1 to condition
the word hypotheses on both the standard acoustic featuresA
and the prosodic featuresF :W � = argmaxW P (W jA;F )= argmaxW P (W jF )P (AjW;F )P (AjF )� argmaxW P (W jF )P (AjW )P (AjF )= argmaxW P (W jF )P (AjW )= argmaxW P (W;F )P (AjW )= argmaxW XS P (W;S;F )P (AjW ) (2)

Line 3 relies on the approximation that the standard acoustic
features are independent of the prosody once conditioned onthe
word sequence. For line 4, we use the fact thatP (AjF ) andP (F ) are constants with respect toW . Note that the last line
requires us to consider all possible structuresS for a given word
sequence.



Event class Tag Freq. Example
Sentence
boundary S 10.8% I haven’t seen it�

Not sure I like it

Filled pause FP 2.9% he uh� liked it

Repetition REP 1.9% he� he liked it

Deletion DEL 1.3% it was� he liked it

Repair OthDF 1.2% he� she liked it

Else/fluent else 81.8% she� liked it

Table 1. Boundary and disfluency event classes.

3. HIDDEN EVENTS

The present work builds on our previous research on modeling
hidden events for the purpose of automatic detection [12, 15].
Hidden events can be viewed as tags that label the type of bound-
ary between adjacent words. We used the sentence boundary
and disfluency event classes from [15] in our models, shown in
Table 1 with examples and frequencies in the corpus we used for
experiments.

3.1. Prior Work
The hidden-event classes chosen correlate with the surrounding
words, as well as with prosodic features such as pause, duration,
and pitch. Hidden events are thus suitable candidates for the kind
of hidden structure needed to leverage prosody as a knowledge
source for word recognition. Prosodic cues have been studied
mainly for the purpose of automatic detection of disfluencies
[10, 12] and sentence boundaries [8]. The correlation between
hidden events and word cues has likewise been exploited, for
detecting both sentence boundaries [14, 8] and disfluencies[2, 6,
among others], although recent work has also shown that speech
languagemodels can be improved by incorporating hidden events
into the model [5]. For the present work we reused prosodic
and language models of hidden events previously developed for
automatic detection from combined acoustic and lexical cues
[15], but applying the models in the word recognition paradigm
of Section 2.

Compared to other work on word recognition, our approach is
most similar to the prosody/parse scoring paradigm of Veilleux
and Ostendorf [16], who also propose leveraging prosody for
word recognition through hidden structure, in a probabilistic
framework. In their case, the hidden structure consists of the syn-
tactic parse of the utterance. Another difference is that wemodel
continuous prosodic features directly from the hidden structure,
rather than using an intermediate phonological representation
(prominence labels and break indices).

3.2. Hidden-Event Modeling
Our goal is to model the joint probabilitiesP (W;S; F ) of
wordsW , hidden structureS, and prosodic featuresF . The
hidden structure in this case consists of a sequence of eventsS = E1; E2; : : : En, corresponding to the words boundaries fol-
lowing the wordsW = W1;W2; : : : ;Wn. TheEi are from the
set shown in Table 1.

We decomposeP (W;S;F ) into the joint probability of words
and events, and that of the prosody given the words and events:P (W;S;F ) = P (W;S)P (F jW;S) (3)

Furthermore, we assume that the prosodic features correlate with
the events in a local fashion: prosodic featuresFi are computed
from a window around boundaryi, and correlate mainly with
eventEi:P (F jW;S) = P (F1 : : : FnjE1 : : : En;W )� nYi=1

P (FijEi;W ) (4)

For modeling the relation between words and events,P (W;S),
we use standard language modeling techniques. The events
can be represented as pseudo-words and the whole sequence(W;S) = W1E1W2E2 : : :WnEn may be modeled using a stan-
dard N-gram model. The model is trained on annotated tran-
scripts using standard smoothing and backoff techniques. To
make better use of the limited span of the N-gram model, we rep-
resented only sentence boundary and disfluency events by tags;
sentence-internal fluent word transition events (which account
for the vast majority of cases; cf. Table 1) are represented im-
plicitly by the absence of an event tag, as shown in the example
from the Introduction:

Right<S> I <REP>I don’t <DEL> uh<FP> I’m not
really sure: : :

During testing, the events are unknown. According to Equa-
tion 2, we need to sum over all possible event sequences for a
given word sequence. By using an N-gram model forP (W;S),
and decomposing the prosodic likelihoods as in Equation 4, the
joint modelP (W;S;F ) becomes equivalent to a hidden Markov
model (HMM). The HMM states are the (word,event) pairs,while
prosodic features form the observations. Transition probabilities
are given by the N-gram model; emission probabilities are es-
timated by the prosodic model described below. Based on this
construction, we can carry out the summation over all possible
event sequences efficiently with the familiar forward dynamic
programming algorithm for HMMs.

3.3. Prosodic Model
We are thus left with the task of estimating likelihoods of eventsEi, P (FijEi;W ), based on prosodic featuresFi around a word
boundary. Because the event space is discrete and small, and
the prosodic feature space continuous, high-dimensional,and
highly correlated, it is convenientto invert the problem and model
posterior event probabilities instead:P (FijEi;W ) = P (FijW )P (EijFi;W )P (EijW )
We assume that the prosodic features are marginally independent
of the words,P (FijW ) � P (Fi), so that the first term can be
treated as a constant. This is justified if, as in our case, we only
make prosodic features dependent on segmentation information
from an alignment ofW , and not on the identities of the words
themselves.

The posterior event probabilitiesP (EijFi;W ) could be esti-
mated by a variety of probabilistic classifiers, including decision
trees, neural networks, or exponential models. As in previous
work, we trained CART-style decision trees [3] to estimate these
posteriors, and resampled the data to give equal priors for all
event types, so as to avoid the explicit scaling byP (EijW ).
(Note that this effectively scales byP (Ei) only, again justified
by the weak conditioning on alignment information.)

4. RESULTS AND DISCUSSION

We tested our approach on the Switchboard corpus of conver-
sational speech [4]. Prosodic and event language models were
trained on 900 conversations that had been annotated with hidden
events by the Linguistic Data Consortium [9]. We generated the
top 100 hypotheses for a 19-conversation test set (18,000 words),
using standard acoustic and language models.

A further six conversations were decoded for the purpose of
tuning model parameters. Two weighting parameters were op-
timized this way: first, an exponent onP (W;F ) in Equation 2
serves to balance the overall prosodically-conditioned model
with the standard acoustic model. This parameter corresponds
to the language model weight in a standard recognizer. Second,
an exponent onP (F jW;S) in Equation 3 balances the influence
of the prosodic component against the event language modelP (W;S).

The N-best lists were rescored with three models:



Model WER (%) Sub Del Ins
Standard N-gram 47.9 31.1 12.2 4.6
HE N-gram, no prosody 47.6 30.4 13.3 3.9
HE N-gram, with prosody 47.0 29.7 14.1 3.2

Table 2. Results rescoring 100-best lists with hidden-event
models. The word error rates (WER) is broken down into
Sub(stitutions), Del(etions) and Ins(ertions).� A standard trigram, trained on the same amount of data as

the hidden-event models (a 4-gram model was generated
but proved no better than the trigram).� A hidden-event 4-gram model (without prosodic condition-
ing). (This model is obtained by setting the second tuning
parameter to zero.)� A prosodically conditioned 4-gram hidden-eventmodel (the
full model proposed in this paper).

All weights (including the LM weight for the standard model)
were tuned independently on the tuning set.

The prosodic features used captured a range of durational as-
pects of the speech. They included the duration of pauses, offinal
vowels and of final syllable rhymes, which were normalized both
for phone duration and by speaker-specificstatistics. Notably, no
features based on pitch and energy were used, as such features
had not proven helpful for event detection in past work on this
corpus.

4.1. Word Error Results
Table 2 summarizes the results. We see a small (0.9% absolute
reduction) in word error rate (WER) between the baseline andthe
full, prosodically conditioned hidden-event model. (The differ-
ence is highly significant in a matched-pairs test,p < :000001.)

Note that about one third of the improvement seems to come
from hidden-event modeling in the language model alone (0.3%,p < :02). This is evidence that, even without prosodic condi-
tioning, the hidden-event language model does a better job at
modeling the words, by considering the potential events between
words.

4.2. Result Analysis
The breakdown of the WER by error type in Table 2 shows that the
overall reduction in error is achieved through fewer substitutions
and insertions, at the expense of more deletions. Note that this
is not due to a differently optimized word insertion penalty(the
word insertion penalty was fixed at 0, a value that happened tobe
optimal for the baseline model). Thus, the hidden-event model
seems to inherently suppress insertions and substitutions. This
trend is present even for the word-only hidden-event model.and
is further reinforced by the use of prosodic cues.

A preliminary error analysis suggests that the prosodic model
reduces false detections of high-frequency words that tendto
occur at sentence boundaries and/or in disfluent repetitions (“I”,
“and”, “the”). Since such words are very frequent in the train-
ing data, and are often phonologically reduced, they are likely
candidates for misrecognitions; our model has the means to sup-
press them except in cases where the prosody is consistent with
sentence boundaries and/or disfluencies.

In order to better understandhowthe event modeling provided
the win in word accuracy, we conducted a high-level diagnostic
analysis comparing the baseline model to the prosodic hidden-
event model. We used the following approach to sort output
into useful subsets for analysis. For each word in the reference
transcript, we aligned recognized word strings for each of the
three models. Insertions were arbitrarily grouped as errors with
the following word; while this is suboptimal (using temporal
or phonetic distances to determine attachment would be clearly
preferable) it does not change overall error counts.

Thus for each reference word we obtained an error type as-
sociated with the model of interest, where the error type could

Baseline HE model Ref. words Error ∆
correct incorrect 11402 0

incorrect incorrect 8042 -118
correct incorrect 597 +606

incorrect correct 569 -619

Table 3. Breakdown of changes in error status of refer-
ence words between baseline and prosodic hidden-event
models.

be CORRECT (no error), DELETION, SUBSTITUTION, or a
combination of (one or more) INSERTION with CORRECT or
SUBSTITUTION. Results could thus be compared across mod-
els, indexed by reference word.

Overall statistics from this analysis are tabulated in Table 3.
For example, we see that 8042 reference words were incorrectly
recognized (or preceded by insertions) in both baseline andHE
model. However, due to insertions, the total number of errors
attributed to these cases was 118 less in the HE model. Sim-
ilarly, although slightly more reference words were incorrectly
recognized (or attached to insertions) in the HE model than in the
baseline, the resulting word error count still comes out in favor
of the HE model.

4.3. Examples
More detailed analyses are needed to better characterize the na-
ture of errors corrected by the hidden-event model. However,
using the analysis described above, we were able to extract pro-
totypical cases that illustrate how the hidden-event modelcan
correct errors. The examples below are taken from the set of
errors that were present even with the word-only hidden-event
model, and then corrected in the prosody-informed model;wecan
therefore attribute these corrections to the influence of prosody.

Right before a sentence boundary event, the baseline model
allows word sequences to end in a sentence fragment, but the
hidden-event model strongly disprefers words or N-grams that
cannot end a sentence. The example below illustrates how the
phonetically similar “to”, a more frequent word than the correct
“too”, is fit for a sentence fragment “at church to: : : ”, but not for
the sentence-final “at church to.”, thus giving preference to “too”
in this context.

(2131-B-0053) : : : that at church to<S>�! : : : that at church too<S>

Filled pauses are frequent disfluencies, whose prosodic features
(particularly duration, but also surrounding pauses) are useful for
discriminating them from other frequent short words:

(3528-B-0038) : : : to perform in and col weather�! : : : to perform in UH cold weather

Repetitions are another common disfluency which have charac-
teristic prosodic patterns that distinguish them from bothfluent
repeats and from fluent nonrepeated sequences [13]. While dis-
fluent repetitions like “the the” are represented in a non-event lan-
guage model, they are less frequent than other, fluent sequences
like “to the”. Thus actual repetitions are often misrecognized as
non-repeated sequences, as in

(2461-B-0044) : : : to really hurt to<REP>the middle class�! : : : to really hurt the<REP>the middle class

The event modeling also worked in the other direction, e.g.,pre-
venting spurious disfluent sequences when the speech has fluent
prosody. For instance, as just mentioned, repeated words from
disfluent repetitions such as “the the” are implicitly represented in
a non-event language model. However, the prosodic event model
can prevent such cases from surfacing in recognition if the char-
acteristic repetition prosody is not detected in the context, as it
did in the following example:

(2753-A-0008) : : :problem is here<S> the the source of: : :�! : : :problem is here<S> but the source of: : :



This effect generalized to non-event regions as a whole. That
is, while we might expect that the effects of event modeling
are greatest for words bordering on events, in actuality about
70% of cases in which there was an error in the baseline model
and a correct hypothesis in the event model, were in non-event
contexts.

5. ISSUES FOR FUTURE WORK

We do not want to claim that hidden events are a particularly
effective way to bring prosodic information to bear on word
recognition. In fact, since sentences boundaries and disfluencies
together occur at only 18% of word boundaries, the effect of
the model tried here is inherently limited. The experimentsserve
mainly as a proof of concept,while many other aspects of prosody
remain to be exploited.

It should be noted that our comparison to the baseline model
underestimates the importance of prosodic cues for word recogni-
tion, as the baseline model already uses prosodic cues implicitly.
This is due to the common practice in conversational speech
recognition to chop waveforms at long pauses prior to recogni-
tion; the language model is conditioned on the location of these
chopping boundaries, and hence on pauses.

The hidden-event modeling approach itself is not fully ex-
plored. For example, we have not yet tried to optimize the
feature set used by the prosodic model for word recognition.
For convenience we used an existing prosodic decision tree op-
timized forevent(rather than word) recognition. The tree used
only durational features; pitch and energy features might yield
additional improvements.

Another avenue for further exploration involves varying the
set of events modeled. It is possible that focusing on the high-
frequency events (sentence boundaries, filled pauses and repeti-
tions) is better for word recognition. On the other hand we could
include events such as discourse markers, which are prosodically
distinct and have been shown to be beneficial to language and
boundary modeling [5].

6. CONCLUSION

We have argued for an indirect way to incorporate prosody
into word recognition by modeling hidden structure, beyondthe
words, that correlates with prosody. A simple example of this
approach is the modeling of hidden events (sentence boundary,
disfluencies) in spontaneous speech, since such events are partly
marked by their prosodic manifestations, and are also correlated
with specific word choices. With some independence assump-
tions, hidden events can be modeled efficiently by a combination
of hidden Markov model and prosodic decision trees. Experi-
ments show that this type of model can reduce the word error rate
of a large-vocabulary recognizer. The improvement is obtained
by boosting word hypotheses that are consistent with hidden-
event prosody. Empirically, errors are corrected in both event
and non-event contexts, by suppressing insertion errors and false
detections of disfluent word sequences.
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