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ABSTRACT

We investigate a new approach for using speech prosody as a
knowledge source for speech recognition. The idea is tolpena
ize word hypotheses that are inconsistent with prosodicfea
such as duration and pitch. To model the interaction between
words and prosody we modify the language model to represent
hidden events such as sentence boundaries and variousdbrms
disfluency, and combine with it decision trees that predichs
events from prosodic features. N-best rescoring expetsman

the Switchboard corpus show a small but consistent reductio
of word error as a result of this modeling. We conclude with a
preliminary analysis of the types of errors that are coegdty

the prosodically informed model.

1. INTRODUCTION

One source of information that currently is not being exfjic
modeled for large-vocabulary speech recognition is prpstice
suprasegmental duration, pitch, and energy features @fcépe
Prosodic cues have been used in automatic speech processing
systems for various tasks, such as lexical and syntactrdis
biguation, dialog processing and speech understanding7[11
among others]. Research on small- and medium-vocabuletry re
ognizers have shown that prosodic cues can raise the rahk of t
correct hypothesis [17, 16]. However, prosody is currenty
widely used in large-vocabulary word recognition.

One difficulty in leveraging prosody for word recognition is
that it correlates with linguistic structures that are rhaat or
above the word level; models based on local likelihoodsi(gm
to the standard acoustic models of today’s recognizersiiare
suitable. Therefore, it seems more promising to leveraogsquty
for word recognition in an indirect way: we model the higher-
level structures that manifest themselves prosodicadiywall
as the relationship between these structures and the werd se
guence, and evaluate a word hypothesis based on the comcyiste
of all three components: words, structure, and prosody [E6}
example, we might have a model of syntactic structure and its
prosodic manifestations, as well as a word language model in
terms of syntactic structure. Both together can be usedto pe
nalize hypotheseswhose likely syntactic structure isnistsient
with prosody, and to boost those that are consistent with it.

In this paper, we instantiate this idea, using linguistiocure
of a more rudimentary kind. Instead of full-fledged syntae, w
model the prosody and word sequences associated with senten
boundaries and certain types of disfluencies (hesitatiodself-
repairs). We refer to both types of phenomenhidgen events
becausethey can be thoughtof as hidden pseudo-wordsioccurr
between the observable words. For example,

Right<S>| <REP>| don’'t <DEL> uh <FP> I'm not
really sure. . .

shows a sentences boundaf§>, a disfluent repetitiorREP>

and a disfluent deletion (false stafipEL> as tags at their re-
spective locations in the word stream. These are the kinds of
events we will model, both prosodically and lexically.
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In the next section we formalize the general approach ta-eve
aging prosody via linguistic structure. Section 3 elabesain
the modeling of hidden events and how they can be fit into the
framework. Section 4 presents some preliminary experigient
analyses, and examples of corrected recognition errorgioBé
discusses further work and Section 6 concludes.

2. MODELING APPROACH

Before going into the specifics of hidden-event modeling, we
can formulate the approach outlined in the Introductioroimal
terms. We will denote word sequences with, the associated
standard acoustic features with and any prosodic features with
F'. Given an acoustic manifestation, a standard speech reesgn
searches for the word sequence with highest posterior pilitha
which can be estimated using a word language m&dél’) and
an acoustic likelihood modéet(A|W) [1]:
W* = argmaxP(W|A)

w
argmaxip(W)P(mW)

W P(A4)

argmaxP (W) P(A|W)

@)

Now let us assume that, in order to leverage prosody, we
ascribe a structuré to the word sequencd’. S could be a
parse tree, or, in our case, a representation of the hiddartsev
(sentence boundaries, disfluencies) embeddédl in We also
assume that we have a model for the relation between words,
prosody, and structure, i.e2(W, S, F'). Again, the motivation
for S isthatitis easierto modét(W, S, F') than a direct relation
P(W, F') between words and prosody. The details of this model
are unimportant for now. We can revise Equation 1 to conlitio
the word hypotheses on both the standard acoustic features
and the prosodic featurds:

wr =

argmaxP(W|A, F)
w

P(W|F)P(A|W, F)
PAlF)

P(W|F)P(AW)

argmaxP (W |F)P(A|W)

argmax
w

argmaxP (W, F)P(A|W)
w

argma
w

Xy~ P(W, 5, F)P(A[W) @)

Line 3 relies on the approximation that the standard acousti
features are independent of the prosody once condition#tkon
word sequence. For line 4, we use the fact tRgt|F') and
P(F) are constants with respect . Note that the last line
requires us to consider all possible structu¥der a given word
sequence.



[ Eventclass [ Tag | Freq.| Example |
boundary | S| 108% | (SleR Seeh "
Filled pause | FP 2.9% | he uh« liked it
Repetition REP 1.9% | hex he liked it
Deletion DEL 1.3% | it wasx he liked it
Repair OthDF 1.2% | hex she liked it
Else/fluent else 81.8% | shex liked it

Table 1. Boundary and disfluency event classes.

3. HIDDEN EVENTS

The present work builds on our previous research on modeling

hidden events for the purpose of automatic detection [12, 15
Hidden events can be viewed as tags that label the type ofhboun

For modeling the relation between words and eveptdy, 5),
we use standard language modeling techniques. The events
can be represented as pseudo-words and the whole sequence
(W, S) = WiEA WL E> ... W, E,, may be modeled using a stan-
dard N-gram model. The model is trained on annotated tran-
scripts using standard smoothing and backoff techniques. T
make better use of the limited span of the N-gram model, we rep
resented only sentence boundary and disfluency events by tag
sentence-internal fluent word transition events (whichoaot
for the vast majority of cases; cf. Table 1) are represented i
plicitly by the absence of an event tag, as shown in the exampl
from the Introduction:

Right<S> | <REP>| don’'t <DEL> uh <FP> I'm not
really sure. . .

During testing, the events are unknown. According to Equa-
tion 2, we need to sum over all possible event sequences for a
given word sequence. By using an N-gram modelf#g¢iV, 5),
and decomposing the prosodic likelihoods as in Equatiohet, t
joint model P(W, S, F') becomes equivalent to a hidden Markov

ary between adjacent words. We used the sentence boundary podel (HMM). The HMM states are the (word,event) pairs, whil

and disfluency event classes from [15] in our models, shown in
Table 1 with examples and frequencies in the corpus we used fo
experiments.

3.1. Prior Work

The hidden-event classes chosen correlate with the sudimgin
words, as well as with prosodic features such as pausejatyrat
and pitch. Hidden events are thus suitable candidate sddxitial

of hidden structure needed to leverage prosody as a knowledg
source for word recognition. Prosodic cues have been studie
mainly for the purpose of automatic detection of disfluescie
[10, 12] and sentence boundaries [8]. The correlation betwe

hidden events and word cues has likewise been exploited, for

detecting both sentence boundaries [14, 8] and disfluefi;iés
among others], although recent work has also shown thathpee
language models can be improved by incorporating hiddemsve
into the model [5]. For the present work we reused prosodic
and language models of hidden events previously develaped f
automatic detection from combined acoustic and lexicalscue
[15], but applying the models in the word recognition pagadli

of Section 2.

Compared to other work on word recognition, our approach is
most similar to the prosody/parse scoring paradigm of &exl
and Ostendorf [16], who also propose leveraging prosody for
word recognition through hidden structure, in a probatidlis
framework. Intheir case, the hidden structure consistse$yn-
tactic parse of the utterance. Another difference is thanodel
continuous prosodic features directly from the hiddencstne,
rather than using an intermediate phonological repretienta
(prominence labels and break indices).

3.2. Hidden-Event Modeling

Our goal is to model the joint probabilitie® (1, S, F') of
words W, hidden structures, and prosodic featureg. The

hidden structure in this case consists of a sequence of®vent

S = Fh, Ey, ... E,, corresponding to the words boundaries fol-
lowing the words¥ = Wy, W, ..., W,,. The E; are from the
set shown in Table 1.

We decompos® (W, S, F') into the joint probability of words
and events, and that of the prosody given the words and events

P(W, 5, F) = P(W, S)P(F|W, 5) ®)

Furthermore, we assume that the prosodic features cearreitht
the events in a local fashion: prosodic featurgsre computed
from a window around boundary and correlate mainly with
eventr;:

P(FIW,S) = P(Fi...Fu|Er... E,, W)

ﬁP(FAEi,W)

=1

Q

(4)

prosodic features form the observations. Transition podities

are given by the N-gram model; emission probabilities are es
timated by the prosodic model described below. Based on this
construction, we can carry out the summation over all pdssib
event sequences efficiently with the familiar forward dyiam
programming algorithm for HMMs.

3.3. Prosodic Model

We are thus left with the task of estimating likelihoods oéets

E;, P(F;|E;,W), based on prosodic featur&s around a word
boundary. Because the event space is discrete and small, and
the prosodic feature space continuous, high-dimensiarad,
highly correlated, it is convenientto invert the problerd amodel
posterior event probabilities instead:

P(F;|\W)P(E;|F;, W)

P(F|E,W) = P(E;W)

We assume that the prosodic features are marginally indigpen

of the words,P(F;|W) ~ P(F;), so that the first term can be
treated as a constant. This is justified if, as in our case,mye o
make prosodic features dependent on segmentation infiomat
from an alignment o#¥, and not on the identities of the words
themselves.

The posterior event probabilitie3( £;| F;, W) could be esti-
mated by a variety of probabilistic classifiers, includiregision
trees, neural networks, or exponential models. As in previo
work, we trained CART-style decision trees [3] to estimatese
posteriors, and resampled the data to give equal priorslifor a
event types, so as to avoid the explicit scaling ByFE;|WV).
(Note that this effectively scales b§( £;) only, again justified
by the weak conditioning on alignment information.)

4. RESULTS AND DISCUSSION

We tested our approach on the Switchboard corpus of conver-
sational speech [4]. Prosodic and event language modets wer
trained on 900 conversationsthat had been annotated widehi
events by the Linguistic Data Consortium [9]. We generalted t
top 100 hypotheses for a 19-conversationtest set (18,00ds)0
using standard acoustic and language models.

A further six conversations were decoded for the purpose of
tuning model parameters. Two weighting parameters were op-
timized this way: first, an exponent dA(W¥, F') in Equation 2
serves to balance the overall prosodically-conditionedieho
with the standard acoustic model. This parameter corredgpon
to the language model weight in a standard recognizer. $econ
an exponent ot ( F'|W, S) in Equation 3 balances the influence
of the prosodic component against the event language model
P(W,S).

The N-best lists were rescored with three models:



[ Model | WER (%) [ Sub | Del | Ins |
Standard N-gram 47.9 31.1] 12.2] 46
HE N-gram, no prosody 47.6 304 13.3| 3.9
HE N-gram, with prosody]  47.0 29.7]141] 3.2

Table 2. Results rescoring 100-best lists with hidden-event
models. The word error rates (WER) is broken down into
Sub(stitutions), Del(etions) and Ins(ertions).

e A standard trigram, trained on the same amount of data as
the hidden-event models (a 4-gram model was generated
but proved no better than the trigram).

¢ A hidden-event 4-gram model (without prosodic condition-
ing). (This model is obtained by setting the second tuning
parameter to zero.)

¢ Aprosodically conditioned 4-gram hidden-eventmodel (the
full model proposed in this paper).

All weights (including the LM weight for the standard model)
were tuned independently on the tuning set.

The prosodic features used captured a range of durational as
pects of the speech. They included the duration of paustsabf
vowels and of final syllable rhymes, which were normalizetthbo
for phone duration and by speaker-specific statistics. iNgtao
features based on pitch and energy were used, as such geature
had not proven helpful for event detection in past work onm thi
corpus.

4.1. Word Error Results

Table 2 summarizes the results. We see a small (0.9% absolute
reduction) in word error rate (WER) between the baselindlaad
full, prosodically conditioned hidden-event model. (Thtfed-
ence is highly significant in a matched-pairs tgst; .000001.)

Note that about one third of the improvement seems to come
from hidden-event modeling in the language model aloné€40.3
p < .02). This is evidence that, even without prosodic condi-
tioning, the hidden-event language model does a bettertjob a
modeling the words, by considering the potential eventaéen
words.

4.2. Result Analysis

The breakdown of the WER by error type in Table 2 shows that the
overall reduction in error is achieved through fewer subttins

and insertions, at the expense of more deletions. Notehisat t
is not due to a differently optimized word insertion pendttye
word insertion penalty was fixed at 0, a value that happeniee to
optimal for the baseline model). Thus, the hidden-eventehod
seems to inherently suppress insertions and substitutidhis
trend is present even for the word-only hidden-event moated.

is further reinforced by the use of prosodic cues.

A preliminary error analysis suggests that the prosodicehod
reduces false detections of high-frequency words that tend
occur at sentence boundaries and/or in disfluent repetifith
“and”, “the”). Since such words are very frequent in thertrai
ing data, and are often phonologically reduced, they amdylik
candidates for misrecognitions; our model has the meangto s
press them except in cases where the prosody is consistant wi
sentence boundaries and/or disfluencies.

In order to better understahdwthe event modeling provided
the win in word accuracy, we conducted a high-level diagnost
analysis comparing the baseline model to the prosodic hidde
event model. We used the following approach to sort output
into useful subsets for analysis. For each word in the ratere
transcript, we aligned recognized word strings for eachhef t
three models. Insertions were arbitrarily grouped as sndth
the following word; while this is suboptimal (using tempbra
or phonetic distances to determine attachment would belglea
preferable) it does not change overall error counts.

Thus for each reference word we obtained an error type as-
sociated with the model of interest, where the error typddtou

| Baseline] HE model | Ref. words| ErrorA |

correct incorrect 11402 0
incorrect | incorrect 8042 -118
correct incorrect 597 +606
incorrect correct 569 -619

Table 3. Breakdown of changes in error status of refer-
ence words between baseline and prosodic hidden-event
models.

be CORRECT (no error), DELETION, SUBSTITUTION, or a
combination of (one or more) INSERTION with CORRECT or
SUBSTITUTION. Results could thus be compared across mod-
els, indexed by reference word.

Overall statistics from this analysis are tabulated in &l
For example, we see that 8042 reference words were inclyrrect
recognized (or preceded by insertions) in both baselingad
model. However, due to insertions, the total number of srror
attributed to these cases was 118 less in the HE model. Sim-
ilarly, although slightly more reference words were inectly
recognized (or attached to insertions) in the HE model th&md
baseline, the resulting word error count still comes ouavof
of the HE model.

4.3. Examples

More detailed analyses are needed to better characteeizeath
ture of errors corrected by the hidden-event model. However
using the analysis described above, we were able to extract p
totypical cases that illustrate how the hidden-event madel
correct errors. The examples below are taken from the set of
errors that were present even with the word-only hiddemeve
model, and then corrected in the prosody-informed modetame
therefore attribute these corrections to the influence asqay.

Right before a sentence boundary event, the baseline model
allows word sequences to end in a sentence fragment, but the
hidden-event model strongly disprefers words or N-graras th
cannot end a sentence. The example below illustrates how the
phonetically similar “to”, a more frequent word than the reat
“too”, is fit for a sentence fragment “at church to”, but not for
the sentence-final “at church to.”, thus giving preferecido”
in this context.

(2131-B-0053)

—

...that at church t&S>
...that at church togS>

Filled pauses are frequent disfluencies, whose prosodiaréesa
(particularly duration, but also surrounding pauses) aefuwl for
discriminating them from other frequent short words:

(3528-B-0038)

—

...to perform in and col weather
...to perform in UH cold weather

Repetitions are another common disfluency which have charac
teristic prosodic patterns that distinguish them from Kfatant
repeats and from fluent nonrepeated sequences [13]. Whkile di
fluentrepetitions like “the the” are represented in a noar¢ian-
guage model, they are less frequent than other, fluent segsen
like “to the”. Thus actual repetitions are often misrecaguaias
non-repeated sequences, as in

(2461-B-0044)

—

... to really hurt to<REP>the middle class
... to really hurt the<REP>the middle class

The event modeling also worked in the other direction, pre;
venting spurious disfluent sequences when the speech has flue
prosody. For instance, as just mentioned, repeated wards fr
disfluentrepetitions such as “the the” are implicitly reggated in
anon-eventlanguage model. However, the prosodic eventimod
can prevent such cases from surfacing in recognition if tae-c
acteristic repetition prosody is not detected in the cante it

did in the following example:

(2753-A-0008)

—

... problem is heresS> the the source af. .
... problem is hereS> but the source of. .



This effect generalized to non-event regions as a whole.t Tha
is, while we might expect that the effects of event modeling
are greatest for words bordering on events, in actualityuabo
70% of cases in which there was an error in the baseline model
and a correct hypothesis in the event model, were in nonteven
contexts.

5. ISSUES FOR FUTURE WORK

We do not want to claim that hidden events are a particularly
effective way to bring prosodic information to bear on word
recognition. In fact, since sentences boundaries and disflas
together occur at only 18% of word boundaries, the effect of
the model tried here is inherently limited. The experimsetve
mainly as a proof of concept, while many other aspects ofqatps
remain to be exploited.

It should be noted that our comparison to the baseline model
underestimates the importance of prosodic cues for wonbrée
tion, as the baseline model already uses prosodic cuegithypli
This is due to the common practice in conversational speech
recognition to chop waveforms at long pauses prior to recogn
tion; the language model is conditioned on the location e$éh
chopping boundaries, and hence on pauses.

The hidden-event modeling approach itself is not fully ex-
plored. For example, we have not yet tried to optimize the
feature set used by the prosodic model for word recognition.
For convenience we used an existing prosodic decision free o
timized forevent(rather than word) recognition. The tree used
only durational features; pitch and energy features miggity
additional improvements.

Another avenue for further exploration involves varying th
set of events modeled. It is possible that focusing on thh-hig
frequency events (sentence boundaries, filled pauses peti-re
tions) is better for word recognition. On the other hand waldo
include events such as discourse markers, which are przglydi

distinct and have been shown to be beneficial to language and [12]

boundary modeling [5].

6. CONCLUSION

We have argued for an indirect way to incorporate prosody
into word recognition by modeling hidden structure, beytrel
words, that correlates with prosody. A simple example of thi
approach is the modeling of hidden events (sentence boyndar
disfluencies) in spontaneous speech, since such eventardye p
marked by their prosodic manifestations, and are also leoeck
with specific word choices. With some independence assump-
tions, hidden events can be modeled efficiently by a comioinat
of hidden Markov model and prosodic decision trees. Experi-
ments show that this type of model can reduce the word ert®r ra
of a large-vocabulary recognizer. The improvement is oletai

by boosting word hypotheses that are consistent with hidden
event prosody. Empirically, errors are corrected in botanev
and non-event contexts, by suppressing insertion erraffadse
detections of disfluent word sequences.
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