

Speech Trends and Predictions, or Do We Need Text?

Patti Price

Speech Technology and Research Laboratory

SRI International

There has been remarkable progress in automatic speech recognition technology in the last ten years. Performance, however, remains significantly worse than human performance. Speech recognition systems do reasonably well for careful speakers in relatively quiet environments when the conditions do not vary much from the training conditions. However, degradation can be severe with even minor levels of noise, with casual speech effects, and with mismatches between training and testing conditions related to dialect, vocabulary, and other characteristics. Nonetheless, speed and accuracy of the automatic systems have increased to the point where many useful applications are possible. The rapid growth in the number of companies devoted to speech recognition applications attests to this growth in performance. This brief report explores the further potential for speech technology.

Recent History of Performance Gains. Government benchmarks in speech recognition have shown steady performance improvement. As performance improves to below about 10%, the benchmark tests have expanded to be more challenging. The community has moved from tasks focused on speaker-dependent performance to speaker-independent (and adaptive) performance, from small vocabularies to larger ones, from a sound-attenuated room to telephone and broadcast news speech, from carefully read speech to spontaneous speech, from simple tasks to more complex ones. While it is true that computational power has increased and memory costs have decreased, it is also true that researchers have consistently been able to make use of the increased computational cycles and cheaper memory. Although the government benchmarks do not assess speed, applications demand speed; the cost of telephony applications depends largely on how much throughput can be handled on a server. The fact that the number and the size of speech companies and of speech groups within other companies are growing seems to be evidence that the demands of speed and size, as well as of accuracy, are starting to be met.

Humans Outperform Machines. Several studies have compared human to machine performance in speech recognition, and in general these studies suggest that humans are far superior to machines in accuracy. Many of these tests, however, use several listeners and allow multiple listening passes to obtain "human" performance. One can wonder, then, how humans could ever be wrong, since they are determining the "correct" response. Further, it has been shown in recent experiments that system performance can also be improved by combining the outputs of several different recognition systems. This is evidence that our systems are not quite so highly correlated as has sometimes been claimed, and that there is still room to learn from each other. These details aside, it is generally true that humans outperform our very best systems, particularly when faced with casual speech, with dialects not well represented in the training materials, and with relatively low noise levels.

Machines May Outperform Humans. Despite their generally superior performance in measures of

accuracy, humans have some disadvantages relative to machines: They want more in salary and benefits than many systems require, they are not willing to work 24 hours a day, they can suffer from inattention and boredom, and they are not as good at parallel processing. In many cases they are not as fast as machines. In addition to these general differences, there are probably now some other cases in which machines can outperform humans, though I know of no data yet to this effect. For example, machines may be no more degraded in noise than are (other) nonnative speakers, they are probably better than humans at speaker identification based on small training sets, and they are probably better than humans at recognizing nonspeech characteristics, such as channel effects.

Current Speech Recognition Applications. The two main areas in which speech is being commercialized are eyes/hands busy (over the telephone and/or in a car) and dictation. These are good first applications, because they enable the user to interact with and to adapt to the capabilities of the machine. People are far more adaptable at present than are our systems, and when recognition errors are seen, they adapt the way they are speaking to reduce these errors. We have seen a halving of error rates in the second compared to the first ten minutes of interaction, for example. The reduction in error rate seems to arise from people using fewer out-of-vocabulary/domain terms, speaking more carefully, and speaking more fluently.

The fact that people can adapt to the systems makes them more tractable at present, relative to conditions in which a person cannot adapt.

Future Directions.

Spoken language is the medium used first and foremost for interactive human communication. It may be what distinguished us from the beasts in allowing more information sharing. This information sharing was, however, limited by life span and memory. The move from the oral stage to the written stage of communication was an information revolution, because it enabled communication at a distance in time and in space (if you could remember where the book was and could find the information you wanted within it). The computer age brought another revolution in making online text randomly accessible. It also brought new sources of information: for example, radio, video, multimedia. Most of the currently commercialized applications of speech recognition use speech as a means to access information (database query, command and control) or purely to input information (dictation). However, I'd like to ask here that we imagine that we could endow speech with all the properties that we now enjoy in online text. I am not yet ready to give up my book by the fireside, but as technologists we can learn something by asking: If we could give speech these attributes, would we need text? Setting aside instances in which the auditory channel is simply not available, what makes us choose text over speech and can we imagine it otherwise? Imagine that all speech could be accessible as an information source. What types of speech would be of interest, how would it be used, and what technologies are needed to enable this vision?

Some types of speech that might be of interest are voice mail messages (particularly for call-in help lines), talks at technical, planning and design meetings, radio and television broadcasts, and speeches. In fact, if speech were as accessible as text, perhaps it would be used more. For example, speech annotation

could be used in documentation of computer programs, of design decisions, or of video. Video annotation is of interest so that we can retrieve video segments even though there may be no accompanying speech to transcribe, no speech that describes the video segment of interest, or no video technology adequate to retrieve the item of interest. To enable access to these types of speech as an information source, we will need further development in modeling spontaneous and casual speech effects, speech in various kinds of noise, and speech from very heterogeneous sources. We can quickly scan text visually to find a section of interest. Could we ask our technology to find a section of interest by asking: "When did X say Y?" Could we use speech technology to play the section through quickly (blind people listen to synthesizers at very fast rates). Often when we scan a text by eye, we find something of interest that we didn't know we were looking for. Can we ask our technology to find examples of things we previously found of interest, or things that are different or salient in a particular segment? Often we want to look through a document to get an idea of what it's about to know whether we should read it in detail or recommend it to someone else. Can we ask our technology to gist or to summarize the contents of a spoken document?

Text clearly differs from speech, and it is important to understand those differences. When Sartre lost his sight, he stopped writing because writing was so visual for him. Can we develop technology that would have allowed Sartre to continue "writing"? One major difference is that speech unfolds linearly in time. It is harder to go back and reread. Perhaps technology could make relistening easier. Text tends to differ grammatically from speech. On the one hand it is simpler in that the rules seem to be more regularly applied. On the other hand, written language tends to be more complex since writers can pack in more information because they know that readers can easily reread. This is part of what makes presentations that are read rather than "spoken" so hard to understand: the information density tends to be greater (they may also be more difficult to understand because the prosody may be infelicitous). Perhaps technology can provide tools for spoken document production, tools that enable the creation of coherent, easily understood audio documents. Perhaps technology can provide tools that can transform one medium (e.g., the spoken form) into another (e.g., the written form), including an accounting for all the normal differences between the two styles: removal of disfluencies, and repackaging of information. Perhaps technology can translate a spoken document into a spoken document in another language, or translate a spoken document into the same language but with simpler words and grammar so that it is more accessible to beginning readers or nonnative speakers. In sum, let's not give up our books and text yet, but let's ask why we need text now, and what technology could do to make endow speech with those properties we appreciate in text.